
Detecting JVM JIT Compiler Bugs via Exploring
Two-Dimensional Input Spaces

Haoxiang Jia1†, Ming Wen1†∗, Zifan Xie1†, Xiaochen Guo1† Rongxin Wu2

Maolin Sun1†, Kang Chen1†, Hai Jin3†
1School of Cyber Science and Engineering, Huazhong University of Science and Technology, China

2School of Informatics, Xiamen University, China
3School of Computer Science and Technology, Huazhong University of Science and Technology, China

Email: {haoxiangjia, mwenaa, xzff, xiaochenguo, merlinsun, void0red, hjin}@hust.edu.cn, {wurongxin}@xmu.edu.cn

Abstract—Java Virtual Machine (JVM) is the fundamental
software system that supports the interpretation and execution of
Java bytecode. To support the surging performance demands for
the increasingly complex and large-scale Java programs, Just-
In-Time (JIT) compiler was proposed to perform sophisticated
runtime optimization. However, this inevitably induces various
bugs, which are becoming more pervasive over the decades
and can often cause significant consequences. To facilitate the
design of effective and efficient testing techniques to detect JIT
compiler bugs. This study first performs a preliminary study
aiming to understand the characteristics of JIT compiler bugs
and the corresponding triggering test cases. Inspired by the
empirical findings, we propose JOpFuzzer, a new JVM testing
approach with a specific focus on JIT compiler bugs. The
main novelty of JOpFuzzer is embodied in three aspects. First,
besides generating new seeds, JOpFuzzer also searches for
diverse configurations along the new dimension of optimization
options. Second, JOpFuzzer learns the correlations between
various code features and different optimization options to guide
the process of seed mutation and option exploration. Third,
it leverages the profile data, which can reveal the program
execution information, to guide the fuzzing process. Such nov-
elties enable JOpFuzzer to effectively and efficiently explore
the two-dimensional input spaces. Extensive evaluation shows
that JOpFuzzer outperforms the state-of-the-art approaches in
terms of the achieved code coverages. More importantly, it has
detected 41 bugs in OpenJDK, and 25 of them have already been
confirmed or fixed by the corresponding developers.

Index Terms—JVM, JIT Compiler, JVM Testing

I. INTRODUCTION

Java Virtual Machine (JVM) plays a fundamental role in
supporting the interpretation and execution of Java bytecode,
which can be compiled from various high-level programming
languages such as Scala, Java, and Kotlin. Due to the extensive
utilization of the Java programming language [1] and the
active development of bytecode-based applications, many JVM
systems have been implemented by different organizations and
companies, such as the HotSpot by Oracle [2], DragonWell by
Alibaba [3], OpenJ9 by IBM [4], and Zulu by Azul [5]. Such
JVM systems are often complex in their functionalities and
large-scale in sizes [6], and thus critical bugs or vulnerabilities

† Hubei Key Laboratory of Distributed System Security, Hubei Engineering
Research Center on Big Data Security, National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Lab, Cluster and Grid Computing Lab.

∗ Corresponding author

are inevitable, which often lead to unexpected behaviors
or even catastrophic consequences for end users. Therefore,
ensuring the quality of JVM systems is critical.

As the size of the programs running on top of JVM becomes
increasingly larger, greater demands are being placed on the
performance of JVM systems. Catering to the surging demands
for the performance of Java applications, Just-In-Time (JIT)
compiler was developed as a key component of JVM (e.g.,
OpenJDK supports JIT since Java Version 1.3), and performs
optimizations to generate high quality machine code during
runtime. Typically, there are two main JIT compilers, namely,
the client compiler (a.k.a the C1 compiler) and the server
compiler (a.k.a the opto or C2 compiler). Common optimiza-
tion strategies include method inlining, escape analysis, and
loop unrolling. Via inspecting all the existing bug reports of
HotSpot, a popular implementation of JVM, we observe that
the total number of reported bugs has decreased over the last
ten years, while the proportion of JIT compiler-related ones
has increased greatly. Such bugs can have significant impacts,
such as leading JVM systems to crash [7].

Various fuzzing techniques have been proposed to detect
JVM bugs recently [8]–[10]. The basic intuition is to generate
diverse and effective test inputs, e.g., source files (*.java)
or bytecode files (*.class), to test JVM systems to trigger
unexpected behaviors. For instance, classfuzz employs a set
of pre-defined syntactic mutation operators, such as deleting
exception handlers and changing variable modifiers/types [8],
to generate test inputs. classming was proposed to manipulate
the control/data flow via inserting/deleting goto or return
statements to generate diverse test inputs [9]. More recently,
JavaTailor was proposed [10] to synthesize seeds via extract-
ing ingredients from historical bug-triggering test cases. De-
spite the promising results, their effectiveness in detecting JIT
compiler bugs is, unfortunately, significantly compromised for
the following reasons. First, they can only detect limited types
of JVM bugs that are irrelevant to optimizations. For instance,
the test inputs generated by classfuzz can only test the loading,
linking, and initialization phases in JVMs, while deeper logic,
such as code optimization, can rarely be explored [8]. Second,
they mainly focus on mutating class files while we observe
that substantial JIT compiler bugs can only be triggered
under specific optimization configurations (see Section III-B).



Therefore, merely focusing on the dimension of mutating class
files is insufficient for triggering such optimization bugs.

To devise tools that can detect JIT compiler bugs more
effectively, we first perform a preliminary study. Specifically,
we extracted 9,252 previously reported JIT compiler bugs of
HotSpot from the JDK bug tracking system and made the
following findings. First, 61.7% of the JIT compiler bugs can
only be triggered under certain optimization options with non-
default values. In addition, the input class files that can trigger
existing JIT bugs often contain a larger number of specific
code features such as assign statements, field access, loop
statements and arithmetic operators. Furthermore, we also
observe that the profile data, which records the information
of dynamic program execution, can reflect to what extent an
input class file has been optimized.

Inspired by our empirical findings, we design JOpFuzzer,
a new JVM testing approach to detecting JIT compiler bugs.
The major novelties of JOpFuzzer are embodied in three
aspects. First, besides generating new seeds as adopted by ex-
isting approaches [8]–[11], JOpFuzzer also searches for di-
verse configurations along the new dimension of optimization
options. However, exploring seed and optimization options
collectively will significantly enlarge the search space, and
thus might compromise both the effectiveness and efficiency
of existing fuzzing techniques. As revealed by our preliminary
study, a certain optimization bug can only be triggered when
using specific code features together with certain options under
specific values. Therefore, considering the possible values of
various options as well as the diversity of code features, the
search space will be explosive. The other two novelties of
JOpFuzzer aim at addressing this challenge. Specifically,
JOpFuzzer first learns the correlations between various code
features and different optimization options based on a large set
of regression tests in prior to the fuzzing process. Such prior
knowledge constructed can guide the process of seed mutation
and option selection during the fuzzing process. Finally, it
also leverages the profile data, which can reveal the program
execution information, to guide the process of seed scheduling.

We performed comprehensive experiments to evaluate the
effectiveness and usefulness of JOpFuzzer. Our results
show that JOpFuzzer can outperform the state-of-the-art ap-
proaches in terms of code coverage. In particular, with respect
to line coverage, JOpFuzzer outperforms the state-of-the-art
JVM testing tools, JavaTailor and classming, by 20.3% and
33.5% respectively on OpenJDK11. On OpenJDK17, the cor-
responding improvements are 21.6% and 30.4% respectively.
Besides, the improvements over function coverage are also
significant. More importantly, JOpFuzzer has detected 41
bugs in OpenJDK, 25 of which have already been confirmed
or fixed by the corresponding developers.

This study makes the following major contributions:
• Empirical Study: We performed an empirical inves-

tigation to understand the characteristics of JVM JIT
compiler bugs and their triggering test cases. The study
reveals important findings on the detection of JIT com-
piler bugs and can shed lights on future researches.

• Approach: Inspired by our empirical findings, we de-
signed JOpFuzzer, which can detect JIT Compiler bugs
effectively and efficiently via exploring two-dimensional
input spaces. Experimental evaluation demonstrates that
it can outperform existing approaches.

• Usefulness: JOpFuzzer has detected many real issues
on OpenJDK. In particular, we reported 41 bugs, with 25
of them already confirmed or fixed by developers. Such
results reflect the usefulness of our approach.

• Artifact: We open-sourced the data of our study as well
as the approach to facilitate future related researches. The
artifact and bug reports are available at: https://github.
com/CGCL-codes/JOpFuzzer.

II. BACKGROUND & MOTIVATION

A. JVM and JIT Compiler

Typically, the JVM performs interpreter execution (i.e., in-
terpreting bytecode files (*.class) at the initial stage). Mean-
while, it will also spot methods or basic blocks that are
frequently executed, and mark these parts as the HotSpot
code [12]. In order to improve the efficiency of executing the
HotSpot code, JVM compiles it into high-quality machine code
during runtime and optimizes it with sophisticated strategies.
The compiler that implements this process is called the Just-In-
Time (JIT) compiler [13], which is an important component of
many JVM implementations (e.g., the HotSpot of OpenJDK).
Currently, there are two mainstream JIT compilers, namely, the
C1 Compiler (client compiler) and C2 Compiler (server com-
piler). The former enjoys a higher startup speed but with lower
peak performance and mainly comprises local optimizations
such as inlining. On the contrary, the C2 Compiler focuses on
global optimizations as well as certain unreliable or aggressive
optimizations based on the program runtime information (stack
state and branch execution information), resulting in longer
startup time for long-running background programs.

B. JIT Compiler Bugs

The JIT compiler is much more sophisticated than the javac
compiler [14], and thus it inevitably contains various bugs
similar to other software systems. These bugs can affect not
only runtime efficiency but also the safety of code execution.
Listing 1 shows the test case that can trigger a JIT compiler
bug reported by our tool and is confirmed by the developers.
This bug is severe and would crash the JVMs of OpenJDK
11, 17 and 19 [7]. Triggering this bug is non-trivial since
it requires a test case and the specific values for certain
options. In the test case of Listing 1, the optimization of
accessing the elements of an array (i.e., arr) is buggy when
unrolling the nested for loops (Line 4-8). However, the default
value of the option -Xcomp -XX:LoopUnrollLimit is 50,
which indicates it will unroll loop bodies with the node count
(i.e., defined by the C2 compiler IR Graph [15]) less than
50. This option makes the test case unable to trigger the
buggy optimization process. On the contrary, when setting the
option -Xcomp -XX:LoopUnrollLimit=500, the test case
can expose this bug since the loop unroll limit is set to 500.



1 public class Test {
2 public static void main(String[] strArr) {
3 int arr[] = new int[100];
4 for (int x = 0; x < 50; x++) {
5 for (int y = 1; y < 5; y++) {
6 // JVM incorrectly unrolls for loop
7 arr[x] -= 1;
8 arr[0] -= 1;
9 }}}}

Listing 1: The Test Case to Trigger JDK-8284879

0%
2%
4%
6%
8%
10%
12%
14%
16%
18%

0

500

1000

1500

2000

2500

3000

3500

Ra
tio

N
um

be
r

Total Bug Number Percentage of Compiler bugs

Fig. 1: The Evolution of the Total Number of Bugs and the
Percentage of JIT Compiler Bugs (counted by every quarter)

JIT compiler bugs have become increasingly pervasive over
recent years. Specifically, Fig. 1 shows the total number of
reported bugs in HotSpot [2] and the ratio of JIT compiler
bugs (counted by every quarter) for OpenJDK over the last 20
years. We determine whether a bug belongs to the JIT compiler
based on the labels of component/subcomponent of the bug
report. It shows that the total number of bugs has decreased
year by year over the last decade, while the proportion of JIT
compiler-related bugs is increasing. In most recent years, the
proportion has exceeded 16% in certain quarters. This trend
shows that the JVM has become more functionally correct
over the decades. However, developers increasingly demand
the correctness and performance of optimization, while the
implementation of optimization often contains various bugs.

The significance of JIT bugs can also be reflected by the
priority assigned to the bugs. Usually, each bug report will
be assigned with a priority by the developer with a severity
level from P1 to P5 (i.e., from the highest to the lowest) [16].
Bugs with higher priorities are often more critical and require
more urgent remediation. We investigate the priority distri-
bution of different components in HotSpot, including over
26,243 reported bugs and 9,252 JIT compiler-related ones (see
Section III for the details on the collection of such bugs).
In particular, we select the six components with the highest
number of bugs, including JIT Compiler, Runtime, GC, JFR,
SVC, and JVMTI. Fig. 2 shows the statistical results. We can
observe that JIT compiler contains 8.5% of P1 level bugs
and the ratio of bugs in P1+P2+P3 exceeds 60%, which is
the highest among all the major components. Such results
reflect that developers often consider bugs in the JIT Compiler
to be more severe and important than other components.
We also observe that JIT compiler bugs often affect more
JDK versions. Specifically, we investigate the number of JDK
versions affected by the major components’ bugs of HotSpot,
and Fig. 3 shows the results. There are usually many versions
of JDK, including the long term support (LTS) versions such

0.0 0.2 0.4 0.6 0.8 1.0

compiler
runtime

all
gc

other
jfr

svc
jvmti

P5
P4
P3
P2
P1

Fig. 2: The Bug Priority Assigned to Bugs of Different Com-
ponents. ‘All’ denotes the average priority of all components
while ‘Other’ denotes the rest of the components.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

compiler

runtime

gc

svc

all

Fig. 3: The Number of JDK Versions Affected by the Major
Components of HotSpot. ‘All’ denotes all components of
HotSpot. The horizontal line in the middle of the bar denotes
the standard deviation. A rectangle filled with the pattern
indicates that the value of JIT compiler is significantly higher.

as JDK 8, 11, 17 and other Non-LTS versions such as JDK
9, 10, 12, etc. The more versions a bug affects, the more
significant the bug is due to its widespread impact. The
statistical results as shown in Fig. 3 indicate that JIT compiler
bugs affect more JVM versions on average, indicating that
such bugs are relatively more critical. Therefore, detecting
JVM JIT compiler bugs is important.

C. Challenges

Effective fuzzing of JIT compilers and discovering opti-
mization bugs are challenging. First, merely exploring the
dimension of generating new seeds is ineffective in trig-
gering JIT compiler bugs (Challenge§1). According to our
investigation, nearly 60% of the existing JIT compiler bugs
require specifying extra options other than the default ones
(see Section III-B). However, existing JVM fuzzing tech-
niques [8]–[10], [17] mainly focus on generating new seed
inputs. Particularly, classfuzz [8] employs predefined mutation
operators to mutate seeds at the syntactic level, such as
changing variables’ types and deleting exception handlers.
classming [9] manipulates the control and data-flow of the
seeds (e.g., insert or delete goto/return statements), which
can generate simple loop structures. JavaTailor [10] generates
new seeds by extracting code ingredients from historical test
programs and randomly inserting these ingredients into the
seed programs. Many generated seeds are invalid due to
the lack of data dependency [9], let alone triggering deep
optimization bugs. Even if the generated mutants can trigger
optimizations, certain codes and logics cannot be explored
when some options are disabled. Therefore, exploring the
dimension of options is necessary.



Second, exploring seeds and options collectively will sig-
nificantly enlarge the search space, thus compromising both
the effectiveness and efficiency of existing fuzzing techniques
(Challenge§2). As indicated by the example in Listing 1,
certain optimization bugs can only be triggered when using
specific code features and setting certain options to specific
values. However, there are plenty of options (i.e., 211 op-
tions in HotSpot) in various types, such as Integer and String.
Considering the possible values of various options and the
diversity of code features, the search space will be explosive.
In addition, there is no reliable information to guide the
exploration of the large search space. As reported by existing
studies [9], [10], the coverage statistics adopted by conven-
tional fuzzing techniques are unsuitable for guiding JVM
testing due to the non-determinism at runtime. Specifically,
the optimizations performed under a particular configuration
can vary since the code can be compiled in parallel by the
JIT compiler, and the garbage collection can be performed as
required. Hence, the coverage statistics on the JVM systems
cannot be leveraged as effective guidance for fuzzing [10].

III. PRELIMINARY STUDY

To understand the characteristics of JIT compiler bugs,
we first perform a comprehensive investigation of existing
JIT compiler bugs. In particular, we performed our study on
HotSpot for two main reasons. First, HotSpot is the most
widely-used and high-performance virtual machine. In 2022,
more than 90% of JDK distributions use HotSpot or HotSpot-
based virtual machines [18]. Second, all the bug reports of
HotSpot over the last decades have been well tracked in the
JDK bug system (JBS) [19]. On the contrary, in other JVM
implementations, bug reports are maintained in a lax manner.
Specifically, we extracted 25,606 previously reported bugs of
HotSpot, and 9,252 of them are JIT compiler related based
on the label of component in the bug reports. Other popular
components include Garbage Collection (GC), Runtime, Java
Flight Recorder (JFR), Serviceability and etc.

This investigation aims to understand how JIT compiler
bugs are triggered in practice. We are interested in understand-
ing the characteristics and conditions (i.e., required options) of
the triggering test cases. Besides, we aim to look for effective
information that can guide the JIT compiler testing. Such
results can shed lights on how to design more effective testing
tools to detect JIT compiler bugs. To achieve these goals,
we first extract the test cases from existing bug reports. We
observe that developers typically use regression tests as trig-
gering test cases in most bug reports. Such inputs cannot serve
our purpose since a regression test often contains the test logic
for multiple bugs. Therefore, we focus on extracting individual
test inputs from bug reports’ descriptions or attachments.
In contrast to regression tests, such collected inputs can be
executed independently. More importantly, they only correlate
with specific issues, which can better reflect the characteristics
of the corresponding bugs. Finally, we extract 955 such bug-
triggering test cases in total from existing bug reports, with
540 of them belonging to the JIT compiler component.

TABLE I: The Code Structures of Bug Triggering Test Cases
for JIT Compiler Bugs and Other Major Components.

Category JIT Compiler Runtime GC All
Assignment Stmt 2.48 0.38 0.83 1.61
If Stmt 0.35 0.22 0.23 0.29
Invocation 1.51 2.75 2.71 2.0
Arithmetic Operator 4.28 1.36 1.40 3.0
Shift Operator 0.11 0.03 0.02 0.08
Logical Operator 0.07 0.04 0.09 0.06
Unary Operator 0.69 0.27 0.73 0.53
Loop1 0.56 0.32 0.96 0.50
Loop2 0.29 0.05 0.16 0.19
Loop3+ 0.11 0.00 0.04 0.07
Switch 0.04 0.00 0.00 0.02
Try-Catch 0.12 0.25 0.14 0.17
Array 0.84 0.68 0.87 0.78
Field Access 4.08 1.40 1.96 2.97
Lambda 0.01 0.03 0.07 0.02
Synchronized Access 0.01 0.03 0.00 0.01
Array refers to the number of array operations (read/write/allocation).
Loopn refers to the loop whose depth is n and 3+ refers to 3 or more.
The bolded value indicates the maximum value and the underline denotes
the value is significantly (p < 0.05) higher than others.

A. Code features of Triggering Test Cases

We first investigate the distribution of different code features
in the triggering test cases of JIT compiler bugs and compare
it to the other types of bugs. Specifically, we use Spoon [20] to
analyze each triggering test case and count the number of code
features, including Language Features and Structure Features
as adopted by the existing study [21].

The results are shown in Table I. We can observe that
JIT compiler bugs contain a significantly larger number of
assignment statements and Arithmetic operators compared
to that of Runtime and Garbage Collection. This is intuitive,
since assignment statements contain most expressions and
can have an impact on the data flow of the program. Thus,
test cases related to data flow optimization (e.g., Conditional
Constant Propagation) will contain more assignment state-
ments. Besides, JIT compiler includes plenty of arithmetic
optimizations (e.g., Peephole) concerning arithmetic opera-
tors. Operator-related bugs are often too subtle to be perceived
by developers. Besides, test cases containing deeper loops
are more likely to trigger JIT compiler bugs. While single-
level loops can also trigger JIT optimizations, deeper ones
have more complex logical relationships in the IR graph,
making it more difficult to perform optimizations such as
loop vectorization. In addition, array-related statements are
used more often in the bug-triggering test cases of the JIT
compiler. Compared with other types of variables, Field is
often involved in the existence of variable escapes and memory
value tracking, which is related to memory-related optimiza-
tion strategies (e.g., stack allocation and scalar replacement).
Since such features are typical subjects for optimization, they
are more likely to trigger optimization errors.

[Finding-1] To trigger JIT compiler bugs, the input class files
usually contain a larger number of specific code features
such as assign statement, field access, loop statement
and arithmetic operator.



0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

O
p

ti
o

n
 N

u
m

b
e

r

Fig. 4: The Distribution of Option Number

B. Optimization Options

In addition to the required class files as inputs, we also
observe that, 61.7% (333/540) of the JIT compiler bugs can
only be triggered by the options with non-default values.
We further investigate the distribution of the number of the
options that require non-default values, and Fig. 4 shows
the results. It can be seen that 59.5% (198/333) of such
bugs require more than one option to be set. Such facts
reveal new challenges for detecting JIT compiler bugs since
the existing techniques [8]–[10], which merely mutate and
generate class files, are incapable of discovering such bugs.
Therefore, it motivates us to perform manipulations on the
configuration (a sequence of options) when testing with newly
generated inputs, which is a new dimension in JVM fuzzing.
Unfortunately, exploring two dimensions (i.e., mutating seed
files and manipulating configurations) collectively will enlarge
the search space significantly. Particularly, we also observe
that the options involved in the above test cases are diverse
(i.e., only four options appeared over 20 times among different
test cases). Such results further indicate that no option can
trigger bugs stably. Consequently, random searching without
guidance is highly likely to compromise both effectiveness
and efficiency. Fortunately, we observe that some options can
only affect those seeds with certain code features. As shown
in Listing 1, the option -XX:LoopUnrollLimit is utilized to
unroll loop bodies with the node count less than the specified
number. Therefore, if there are no loop structures in the seed,
testing the seed under such an option will bring no benefits.
This motivates us to further learn about the correlations
between options and various code features.
[Finding-2] To trigger the majority of the JIT compiler bugs,
certain optimizations are required to be set.

C. Profile Data Difference

JVM typically collects the profile data to characterize and
exploit dynamic program behaviors during program execu-
tions [22], [23]. In particular, the profile data contains the
dynamic information about program execution (e.g., branch
execution times, method call relationship) and JVM states at
runtime (e.g., garbage collection information, CPU elapsed
time of a method). Such profile data can significantly improve
the quality of the optimized code and the efficiency of the
optimization process [24]–[26]. To facilitate the analysis and
performance optimization, JVM also provides certain flags
for developers to access the profile data. For example, users
can specify flag ‘PrintAssembly’ to output the optimized

@ 18 java.lang.String::hashCode (49 bytes) callee is too large

@ 18 java.lang.String::hashCode (49 bytes) inline
@ 19 java.lang.String::isLatin1 (19 bytes) inline
@ 29 java.lang.StringLatin1::hashCode (42 bytes) inline
@ 39 java.lang.StringUTF16::hashCode (not loaded) not inlineable

Fig. 5: The Profile Data of Inline.

Regression Test Encoded Method

Profile Data Difference

Structure-Option
Correlation

Options

Learning Model

Step#1: Initialization

Seed Generator Seed Pool Seed New Seed

Mutation

Affected
Code Structure

Structure-
Related
Option

Bug
Report

Differential
Testing

Profile Data Difference
Effective

SeedStep#2: Seed Mutation & Option Selection

Step#3: Bug Detection

Fig. 6: Overview of the JOpFuzzer

assembly code and flag ‘PrintBlockElimination’ to print
the progress when eliminating unnecessary basic blocks.

The profile data typically contains a list of log informa-
tion, and each line indicates an optimization action. Fig. 5
shows the content of the profile data corresponding to inline
optimizations with the option ‘MaxInlineSize’ set to dif-
ferent values. Each line represents an inline action, where
the compiler tries to inline the function to the one in the
previous line. The byte size of the function is indicated in
parentheses. When the inlining succeeds, “inline” will be
appended at the end of the line; otherwise, the failing reason
will be logged. In Listing 5, the upper and below cases
show the inlining results under the option value of “MaxIn-
lineSize” set to 35 and 50, respectively. Specifically, when
‘MaxInlineSize’ is set to a larger value (the below case),
the function java.lang.String::hashCode can inline the
following three functions. Obtaining such profile data can help
understand whether an optimization strategy has been applied
and to what extent the code has been optimized.

[Finding-3] The profile data is useful for manifesting how
the code has been optimized at runtime.

IV. APPROACH

In this work, we propose JOpFuzzer to test JVM JIT
compilers, which focuses on searching for effective test seeds
collectively with a set of configurations (a sequence of
options) that are more likely to trigger optimization bugs. The
core insights of JOpFuzzer are: (1) many JIT compiler bugs
can only be triggered by seeds with certain code features
under specific configurations collectively. Therefore, besides
generating seeds, searching for diverse configurations along
the new dimension of options is necessary; (2) since various
optimizations will often break the integrity of code features
and the optimized code with larger syntactic differences is



more likely to exhibit irregularities [27], thus triggering po-
tential issues. Therefore, the profile data can serve as important
information to guide the fuzzing process; and (3) the difference
between the profile data can reveal to what extent the seeds
have been optimized. A larger difference often indicates that
the specified options are more sensitive to the seeds, particu-
larly the enclosed code features. Therefore, it can be leveraged
to learn the relationships between options and code features,
thus eliminating the search space explosion problem. Based on
the above insights, we proposed JOpFuzzer in this study,
and the overview of which is shown in Fig. 6. Specifically,
JOpFuzzer mainly contains three steps: initialization, in-
cluding prior knowledge construction and initializing options;
seed mutation & configuration exploration, which aims
at generating new seeds and searching for correlated options
guided by prior knowledge; and bug detection. The following
presents the details of the three steps.

A. Initialization

In this step, we first manually collected all the options
and initialized them according to the range of option values
as recommended by developers. Specifically, we collected
79 options that are related to the mainstream optimization
strategies. Meanwhile, we excluded certain specific options:
the options without the corresponding profile data (e.g., Install-
Methods); verification options that are used to verify optimiza-
tions (e.g., VerifyConnectionGraph); stress options that are
used to stress the optimizations (StressLinearScan), and broken
options confirmed by developers (e.g., TwoOperandLIRForm).
For Boolean options, we use 0/1 to represent the disabling/en-
abling of the option. For numeric options, we choose the upper
and lower boundary values as the candidate values, aiming to
fully test the boundary conditions. For example, the option
EliminateAllocationArraySizeLimit sets the size of the
array to be optimized in the scalar replacement. The range of
this option is from 0 to Integer.MAX VALUE. Therefore, we
choose 0 and Integer.MAX VALUE as the candidates to control
the impact of scalar replacement on arrays. This process is
important since options should be initialized appropriately to
avoid abnormal and invalid values.

After appropriate initialization, another important goal of
this step is to construct the relationship between code features
and options. Such relations can be utilized to effectively
identify related options to trigger JIT optimizations when
mutating specific code features, thus mitigating the search
space explosion problem. To achieve this goal, we utilize the
difference between the profile data obtained by specifying the
designated options with different values to measure the effects.
Our insight is that such effects can help us find the options
that are highly likely to trigger JIT optimizations when we
perform mutations on specific code features. For example,
suppose we mutate the loop structures, we can select the
correlated options to trigger unroll loop optimization instead
of searching options blindly from the large search space. To
construct such prior knowledge, we perform the following
experiment before fuzzing on the regression tests of OpenJDK.

We choose regression tests since they are written by developers
and contain various bug-triggering code features. To qualify
the relationship between specific code features and options, we
take a list of various options, a list of concerned code features,
and the regression tests as inputs to generate the correlation
matrix. The element of the matrix measures the correlation
between a specific type of code feature and a specific option. In
particular, we extract and encode the following code features
following an existing study [21].

• Language Features. The language features include
Statements and Operators, which are the basic and vital
elements of Java language. Statements denote the set of
Java statement types (e.g., If Stmt) and operators denote
the set of all operator types (e.g., Unary Operators).

• Structure Features. The structure features focus on the
existence of control-flow or data-flow related structural
features. In particular, we consider: 1) the existence of
array access and array elements of certain specific dimen-
sions; 2) the existence of field access (usually requires
the access to the class structures); 3) the existence of
lambda expressions; 4) the existence of a loop with a
specific depth; 5) the existence of the synchronized blocks
(e.g., code block, method block, class block); and 6) the
existence of the try-catch blocks.

We adopt one-hot encoding to represent code features. In
particular, if a code feature exists in a method, the value of
the corresponding feature is set to 1; otherwise, it is set to 0.
To effectively learn the correlations, we keep only one option
on and turn the others off at each time. In this study, for a
non-boolean option, turning on means it is set to the upper
boundary value while turning off to the lower boundary.
Then, we try to compile the code under the designated option
with or without the selected method, and obtain the corre-
sponding profile data separately. We work at the method level
since it is the finest unit we can obtain the profile information
through specifying options. In particular, we can set a compile
command option to exclude the method in JIT compilation
by specifying -XX:CompileCommand=exclude,method. If
the profile data changes due to the inclusion/exclusion of a
method, we can measure how the code features in this method
are affected by the selected option. For example, suppose a
method contains several code features and the corresponding
profile data changes dynamically after the method is excluded
in the JIT compilation under a specific option. We can then
infer that part of the code features are likely to affect the
option. Since the profile data is usually large and different
types of profile data contain various features, we employ an
efficient yet effective algorithm (i.e., the List Edit Distance
(LED) algorithm [28]) to compare the difference between two
profile data. In this study, we regard the similarity between two
lines as 1 if they are the same and 0 otherwise. The intuition is
to investigate how many edit operations are required to transfer
one list into another. The higher operations required, the higher
effect of the code features on the option. Specifically, the effect



between two profile data is calculated as follows:

getCorrelation(Pd, Po) =
LED(Pd, Po)

max(len(Pd), len(Po))
(1)

where Pd refers to the default profile data, Po refers to the
profile data when the method is excluded from the JIT com-
pilation. len(Pd) and len(Po) refer to the length of the two
profile data, respectively. LED refers to the List Edit Distance
algorithm [28]. We accumulate the correlation between a type
of code feature and an option measured by traversing all the
methods in the test suites. The matrix Maccess is utilized to
record the access numbers of such relations. Finally, the values
in matrix M divided by the corresponding values in Maccess

are used to denote the final correlation.
Be noted that we utilize 25 out of the 85 different

types of profile data that are related to optimization op-
tions (e.g., PrintEliminateLocks and PrintInlining).
We exclude profile data that prints general information (e.g.,
PrintCompilation and PrintClassHistogram) or is not
related to options. Besides, to minimize the non-deterministic
effects of JIT, we specified the option Xbatch, which will pro-
ceed the compilation of all methods in a foreground task until
completed, making the execution predictable and reproducible.

B. Seed Mutation & Configuration Exploration

In this section, we aim to collectively explore seed mutation
and configuration selection to detect JVM JIT bugs efficiently.
We detail the following steps: (1) generating a seed pool
in Section IV-B1, (2) seed mutation in Section IV-B2, (3)
configuration exploration for testing the mutated seeds in
Section IV-B3 and (4) seed scheduling in Section IV-B4.

1) Seed Pool Generation: We obtain an initial seed pool
using JavaFuzzer [29], a syntax-directed random generator
of Java programs implemented by OpenJDK developers. We
choose this tool since the Java programs generated by Java-
Fuzzer can cover a wide range of syntax characteristics such
as class inheritance, complex loop patterns, and enhanced
exception-throwing patterns.
JOpFuzzer aims to prioritize and select seeds that are

more likely to trigger JIT compiler bugs inspired by Finding-2
in Section III-A. Specifically, it prefers seeds with more field
access statements and arithmetic operations to facilitate
bug discovery since such features occur more often in existing
JIT compiler’s bug triggering inputs. It also prefers loop
structures (including all depth) since the statements within
loop bodies are executed repeatedly, and thus it is more likely
to trigger JIT optimizations. Therefore, we sum up the number
of these three features for all the seeds and sort them in the
descending order.

2) Seed Mutation: According to our preliminary study, not
every code feature can trigger the JIT optimization process.
Therefore, randomly selecting a code feature for mutation
offers limited benefits. Similar to the previous step, we also
prefer to mutate the code features that are more likely to trigger

TABLE II: Code Change Patterns Adopted by TBar
Pattern Pattern
Insert Cast Checker Insert Null Pointer Checker
Insert Range Checker Insert Missed Statement
Mutate Class Instance Creation Mutate Conditional Expression
Mutate Data Type Mutate Integer Division
Mutate Method Invocation Mutate Literal Expression
Mutate Operators Mutate Return Statement
Mutate Variable Move Statement
Remove Statement

2   for(int i=0;i<10000;i++){

6   }}

1  void fun(int m){

5     // …

Changed Features:
Int Type, Invocation, Loop1 (1-depth)

refer to 
Correlation 
Matrix

Optimization Options

Inline Peephole …

Int type 0.3 0.2 …

Invocation 0.8 0.1 …

Loop1 0.6 0.4 …

Weight 1.7 0.7 …

3 ‐ int x = 0;
4 +   int x = Math.abs(m)

Fig. 7: Illustrations of How JOpFuzzer Mutates Seeds,
Extracts the Changed Features and Computes the Weights of
Optimization Options.

JIT optimizations. In particular, we assign the weight w(s) to
each statement s according to the following equation:

w(s) = inLoop(s) + hasF ield(s) + hasArithOp(s) (2)

where inLoop examines whether s resides in a loop body,
hasF ield examines whether s contains field access and
hasArithOp examines whether s contains arithmetic oper-
ators. Their value is 1 if s contains the corresponding code
feature and 0 otherwise. We then select one statement to
mutate by the following potential function:

potential(si) =
w(si)∑n
i=1 w(si)

(3)

where si is the ith statement in the seed, n is the total number
of the statements. Intuitively, the higher a statement’s potential,
the more likely it will be mutated.

After selecting the mutation point (i.e., a statement),
JOpFuzzer aims to perform mutation on it by altering the
semantic logic of existing seeds to generate new ones. It
deliberately destroys the data-flow or control-flow of a seed to
generate corner cases, expecting to trigger more optimization
behaviors. Our insight is that the mutation may alter the
data dependencies (the define-use chain of variables) or the
path constraints that pass through the mutation point, which
may result in abnormal execution behaviors of the seed.
Therefore, the more semantic logic is disrupted, the more
likely the mutant will cause the JVM to fail when it performs
sophisticated optimizations. In this study, we apply the code
change patterns as adopted by TBar [30] to perform the
mutation. TBar is a template-based approach that can be used
to mutate Java programs originally designed for automated
program repair [30]–[33]. We choose TBar since it can offer
flexible and diverse mutation patterns for a given statement.
Specifically, TBar offers 15 categories of mutation patterns
and contains 35 mutation templates, such as variable replacing
and mutating conditional expressions. Table II summarizes the
mutator utilized by TBar [30].



3) Configuration Exploration: JOpFuzzer tends to select
a mutation point that contains optimization-triggering code
features and performs mutations with pre-defined mutators.
In this step, we demonstrate how to select a configuration
(i.e., a sequence of options) to trigger JIT optimizations on the
mutants, and Fig. 7 shows the overall idea. Intuitively, setting
the configuration should consider both the context of the
mutation point and the mutated code features. The context can
offer a holistic view of the code features that can be utilized
to trigger more optimizations, such as loop unrolling. The
mutated statements may contain specific features triggering
more microscopic optimization behaviors, such as peephole
optimization. Therefore, JOpFuzzer extracts the code fea-
tures that contain the mutation point (e.g., Loop1) and the code
features within the mutated statements. We denote such code
features as the changed features as shown in Fig. 7. Then, we
refer to the correlation matrix (as introduced in Section IV-A)
to obtain the configurations that maximize the probability of
triggering possible optimizations for the changed features.

In our design, the higher the correlation value, the more
likely an option can trigger possible optimizations for the
code features. Specifically, suppose there are n changed code
features Lc = {L1, L2, . . . , Ln} where Li denotes one of the
code features, and an option o. We query about the correlation
matrix M and sum up the correlation value of o on all the
changed features as the weight for including option o in the
final configuration. Fig. 7 shows an example of the process,
in which JOpFuzzer mutates the seed, extracts the changed
features and calculates the weight for each option. Then, for
all the m options Lop = {o1, o2, . . . , om}, we use weight(oi)
to denote the weight for the option oi and we include an option
in the configuration by the following potential function:

potential(oi) =
weight(oi)∑m
i=1 weight(oi)

(4)

Accordingly, the higher potential for an option, the higher
probability for JOpFuzzer to select it. JOpFuzzer will
select three options as the final configuration to test the mutant.
We limit the size to three since over 80% (268/333) of the
triggering test cases involve three or fewer options accordingly
to our preliminary study as shown in Fig. 4. Besides, we
select such a number to balance efficiency and effectiveness.
In particular, we will enumerate all the possible values of
the selected options for differential testing since certain bugs
can be triggered only when turning some options on while
others off. For example, triggering JDK-8286871 needs to
turn on OptoNoExecute while turning off TLABStats. Such
enumeration will result in a large search space, and thus
increasing the configuration size will significantly increase
JOpFuzzer’ overheads, thus compromising its efficiency.

4) Seed scheduling: JOpFuzzer prefers the mutants that
can trigger the optimization and hence it will keep such
effective mutants in the seed pool. As the profile data can
reflect the optimization process, we utilize the difference
between the profile data before and after specifying options
to measure the effectiveness of a mutant. Specifically, given a

mutant and a configuration (size = 3), for each option o, we
can obtain two profile data by turning on and off the option
when executing the mutant. Then we utilize Equation 1 to
calculate the correlation between the two profile data under
option o. This way, we can obtain three correlation values for
the configuration. We consider a mutant is effective if all of the
three correlation values exceed the average correlation value
among the correlation matrix since such a value measures the
average effect of the options on various code features. Finally,
JOpFuzzer will append the effective mutant to the seed pool
for further testing. Otherwise, the mutants will be abandoned.

C. Bug Detection

JOpFuzzer mainly employs the following two test oracles
to detect bugs:

Crash: If JVM crashes at runtime, a crashing bug is
considered to be triggered. The root cause of the crash can
be checked and analyzed in an automatically generated file
named hs err pid.log.

Inconsistent: We check whether the target JVM outputs
inconsistent results for the same input under different opti-
mization configurations. However, inconsistent results do not
necessarily indicate real bugs since some optimization will
output extra information, such as certain warning messages
generated for users. Therefore, we further perform manual
investigation to identify bugs to check whether such incon-
sistency is indeed caused by an optimization error.

V. EVALUATION

We performed experiments with the aim to evaluate the
effectiveness and usefulness of JOpFuzzer via answering
the following research questions:

• RQ1 (Effectiveness): How effective is JOpFuzzer in
terms of code coverage and bug detection?

• RQ2 (Components’ Contribution): How is the contri-
bution of the major components of JOpFuzzer?

• RQ3 (Usefulness): Can JOpFuzzer detect real JVM
JIT compiler bugs?

A. Evaluation Setup

Target JVMs. We select the most popular JVM implemen-
tation of HotSpot [34] as our test target. We exclude OpenJ9
since there are few flags available for users to obtain the
profile data. Specifically, we choose the latest debug build
of OpenJDK8, OpenJDK11, OpenJDK17 in our experiments
(i.e., build 25.71-b00, build 11.0.15 and build 17.0.3). We
compiled the latest debug build of these JDKs since the
product versions will not crash directly when encountering
optimization bugs by rolling back to interpretation execution.
On the contrary, the debug build will add assert statements to
help developers check the optimization states during execution.

Baseline. We compare JOpFuzzer with two state-of-
the-art JVM testing technologies JavaTailor [10] and class-
ming [9], which have been introduced in Section II-C. For



TABLE III: Coverage Achieved by JavaFuzzer, classming,
JavaTailor and JOpFuzzer

Category OpenJDK11 OpenJDK17
Line Function Line Function

JavaFuzzer 43.9 38.9 45.1 39.4
classming 42.1 38.1 44.1 39.0
JavaTailor 46.7 40.8 47.3 41.1
JOpFuzzer 56.2 47.6 57.5 47.9

fair comparison, we use the same seed pool generated by Java-
Fuzzer as the seed pool for JavaTailor and classming. Since
classming iteratively mutates seed programs, it is required to
set a number of iterations on each seed program. Following the
experiment settings in the previous work [9], [10], the average
number of iterations for a program in classming is 14 times
of the number of the program instructions. Therefore, we use
the same number to limit the number of iterations.

Environment. Our evaluation was conducted on a linux
server with Intel(R) Xeon(R) Gold 6248R CPU and 256GB
RAM. To collect the coverage of JVM, we adopt the coverage
tool GCOV and LCOV to collect the coverage statistics [35].
Noted that OpenJDK8 does not support the configuration
option --enable-native-coverage which enables native
compilation with code coverage data. Thus, we did not report
the coverage results on OpenJDK8. In particular, we focus
on the coverage statistics of HotSpot and ignore other JDK
components.

B. RQ1: Effectiveness of JOpFuzzer

In this RQ, we compare JOpFuzzer with JavaTailor and
classming on OpenJDK11 and OpenJDK17 with respect to
the achieved code coverage and the number of detected bugs.
Besides, we also collect the initial seed coverage (i.e., denoted
as JavaFuzzer) to reveal the improvement in coverage by
different tools. We run each tool on generated test programs
for 24 hours and repeat the experiments three times.

Code Coverage. Table III shows the results in terms of
code coverage, which is averaged over the repeated exper-
iments. We can observe that JOpFuzzer outperforms the
two baselines in terms of both line and function coverage.
Specifically, JOpFuzzer achieves 56.2%, 47.6% on the line
and function coverage for OpenJDK11 as well as 57.5%,
47.9% for OpenJDK17. On average, JOpFuzzer outper-
forms the best baseline by 20.3% and 16.7% for the line
and function coverage on OpenJDK11, respectively. As for
OpenJDK17, JOpFuzzer outperforms the best baselines for
21.6% and 16.5% for the line and function coverage. Note that
OpenJDK11 and OpenJDK17 consist of about 620KLoc and
656KLoc, respectively. Hence, even 1% coverage improve-
ment can result in thousands of lines being covered.

JavaTailor can only achieve the line coverage of 46.7%
and 40.8% for function coverage for OpenJDK11. We found
that the seed survival rate of JavaTailor was relatively low
after mutation despite the recovery of broken constraints. For
seeds with more complex control and data flows generated by
JavaFuzzer, the seed survival rate is only about 30%. This
suggests that JavaTailor inadequately fixes those constraints

with complex data flow dependencies. Regarding classming,
it achieves 42.1% and 38.1% in terms of the line coverage and
function coverage on OpenJDK11. The corresponding values
are 44.1% and 39.0% on OpenJDK17. The coverage achieved
by classming is even lower than that of the original seeds
since the mutation is inefficient and not scalable. In particular,
classming requires a sequence of executed bytecode instruc-
tions (i.e., live bytecode) during mutation. Relying on such
live bytecode, classming selects the position with the most
interceptions of data dependencies to insert jump statements in
each function. However, the target of JIT optimization is repet-
itive code snippets (i.e., HotSpot code), which often contain
plenty of loops and function calls. Therefore, the number of
live bytecode recorded by classming is explosive while the data
dependency analysis is extremely time-consuming. Therefore,
its efficiency has been significantly compromised.

0

10

20

30

40

50

60

70

c1 c2 rumtime gc

Co
ve

re
d 

Li
ne

s 
(K

 L
O

C)

OpenJDK11

JOpFuzzer

JavaTailor

0
10
20
30
40
50
60
70
80

c1 c2 rumtime gc

Co
ve

re
d 

Li
ne

s 
(K

 L
O

C)

OpenJDK17

JOpFuzzer
JavaTailor

Fig. 8: Line Coverage Comparison in the Major Components

We further investigate the improvement of line coverage
by analyzing how many lines are covered for the major
components compared to the best baseline JavaTailor with the
same experiment setting. Fig. 8 shows the statistical results.
We can observe that JOpFuzzer boosts the line coverage
on the C2 compiler and garbage collection significantly. We
presume this is because JOpFuzzer forces the JVM to per-
form the corresponding optimizations during the configuration
exploration, which requires more memory allocation, thus
resulting in more lines being covered. Such results demonstrate
that JOpFuzzer can improve not only the coverage of the
JIT compiler but also the coverage of other components.

Bug Detection. Table IV shows the total number of detected
bugs results. JOpFuzzer has detected three, six and four
bugs in total on OpenJDK8, OpenJDK11 and OpenJDK17 re-
spectively, while both JavaTailor and classming cannot detect
any bugs within 24 hours. Besides the reasons as discussed
above, another major reason behind the ineffective bug detec-
tion of JavaTailor and classming is that they mainly focus on
detecting the differences between HotSpot and OpenJ9 while
JOpFuzzer focuses on detecting the difference between
the optimization strategies employed by different versions of
HotSpot. Consequently, it is challenging for the existing tools
to detect those optimization bugs in HotSpot.

C. RQ2: Components’ Contribution

In this section, we focus on evaluating the key components
of JOpFuzzer. We design the following three variants and
compare with JOpFuzzer in terms of code coverage.



TABLE IV: Bugs Detected by JOpFuzzer, JavaTailor, Class-
ming, JOpFuzzer-RandomOP and JavaTailor-OP.

Tools OpenJDK8 OpenJDK11 OpenJDK17 Total
JOpFuzzer 3 6 4 13
JavaTailor 0 0 0 0
classming 0 0 0 0
JOpFuzzerrop 1 2 1 4
JavaTailorop 1 3 3 7

• JOpFuzzerrop: this variant explores configuration by ran-
domly selecting three options each time instead of being
guided by our learned prior knowledge. Besides, it does not
perform seed scheduling neither (see Section IV-B4).

• JOpFuzzerns: this variant explores configuration in the
same way as JOpFuzzer, but it does not perform seed
scheduling as introduced in Section IV-B4.

• JavaTailorop: this variant equips JavaTailor with our con-
figuration exploration strategies. In particular, we extract the
changed features for the mutants generated by JavaTailor
and select the correlated options to test the mutant. This
variant can reveal whether our strategies can boost the
performance of other mutation-based approaches.
Table V summarizes the code coverage achieved by the

three variants on JDK11 and JDK17, respectively. The results
show that each major component of JOpFuzzer contributes
to its promising performance. Specifically, by removing the
seed scheduling component, the line and function coverages
have been decreased on both JDK versions (by comparing
JOpFuzzer and JOpFuzzerns). The main contribution of this
component is to eliminate those seeds that are insensitive to
the configurations and hence improve the efficiency of the
testing process. If we eliminate the configuration exploration
strategies, the coverages achieved have decreased further. In
particular, the function coverage has further been decreased
by 5.3% ((45.5%-43.1%)/45.5%). Similar results are observed
for line coverage as well as the results for other JDK versions.
This indicates that our devised configuration exploration strate-
gies contributed significantly to JOpFuzzer’s performance.

We also made some other interesting findings. First, by
randomly exploring optimization options, JOpFuzzer’s per-
formance can also outperform existing baselines (by compar-
ing JOpFuzzerrop with JavaTailor). Such results are align our
previous findings in the preliminary study, which reveal that
merely exploring seed mutation is ineffective in detecting JVM
JIT compiler bugs. Therefore, it confirms our motivation to
perform two-dimensional input space exploration. Second, our
devised configuration exploration can also boost the perfor-
mance of existing state-of-the-art techniques (by comparing
JavaTailor and JavaTailorop). Such results further prove that
our idea of learning correlations between code features and
optimization options, and utilizing correlations to guide the
fuzzing process is feasible and effective.

We further analyzed the bugs detected by the designed
variants. We mainly compare JOpFuzzer with JOpFuzzerrop
and JavaTailorop since the component of option selection
makes the major contribution to JOpFuzzer. Table IV shows
the total number, and we can see that JOpFuzzerrop and

TABLE V: Code Coverage Achieved by the Three Variants

Tools OpenJDK11 OpenJDK17
Line Function Line Function

JOpFuzzerrop 52.1 43.1 52.7 43.5
JOpFuzzernos 54.6 45.5 55.1 45.8
JOpFuzzer 56.2 47.6 57.5 47.9
JavaTailor 46.7 40.8 47.3 41.1
JavaTailorop 53.4 45.6 53.8 45.2

0

2

4

6

8

10

12

14

0 4 8 12 16 20 24

BU
G
S
D
ET

EC
TE

D

TIME

JOpFuzzer JavaTailor-OP JOpFuzzer-ROPJavaTailorJOpFuzzer JOpFuzzer

(a) The Number of Bugs Detected
Over Time of Different Tools

6

0
3
4

1 0 0

𝐉𝐎𝐩𝐅𝐮𝐳𝐳𝐞𝐫

𝐉𝐎𝐩𝐅𝐮𝐳𝐳𝐞𝒓𝒓𝒐𝒑 𝐉𝐚𝐯𝐚𝐓𝐚𝐢𝐥𝐨𝐫𝒐𝒑

(b) Overlap between the De-
tected Bugs of Different Tools

Fig. 9: Dissecting the Number of Detected Bugs

JavaTailorop can detect four and seven bugs respectively,
which outperforms existing baselines. Fig. 9a depicts the
number of detected bugs over time for JOpFuzzer and the
variants within 24 hours. We can see that JOpFuzzer can
detect more bugs continuously over time. On the contrary,
JavaTailorop can only detect limited number of bugs, which
is attributed to two main reasons. First, it will introduce new
loops and external function calls during the fuzzing process,
compromising its efficiency. Second, due to the low survival
rate of the generated seeds, the effectiveness is also degraded.
We further analyzed the overlap among the bugs detected by
different tools, and Fig. 9b shows the results. As it reveals,
JOpFuzzer can detect almost all the bugs that are detected
by the other variants. Only one missed case is detected by
JOpFuzzerrop but not JOpFuzzer. This bug was caused
under the option PinAllInstructions while this option
does not correlate to any specific profile data. Therefore,
JOpFuzzer excluded it and did not specify it during runtime.
JOpFuzzerrop detected it since it randomly selects among all
the optimization options.

D. RQ3: Usefulness of JOpFuzzer

Summary of the detected bugs. We applied JOpFuzzer
to test the latest GitHub commits of OpenJDK8, OpenJDK11,
OpenJDK17 and OpenJDK20. The first three are long-term
supported versions of OpenJDK with the largest market share,
and OpenJDK20 is the mainline version of OpenJDK. During
the two months of testing, JOpFuzzer detected 41 bugs,
with 25 confirmed or fixed. These bugs are related to the JIT
compiler and require a specific configuration to be triggered,
so they cannot be detected by either JavaTailor nor classming.
We identified 33 distinct options among those confirmed bugs,
and found that 88% of those bugs involve one or two options
after reduction. Such options cover inline, loop unrolling,
peephole and many other critical optimizations. Such bugs are



1 public class ClearArray {
2 static long[] STATIC;
3 static void foo() {STATIC = new long[2048 - 1];}
4 public static void main(String[] args) {
5 for (int i = 0; i < 20000; ++i) {
6 foo(); // crash the JVM
7 }}}

Listing 2: The Test Case to Trigger JDK-8284883

challenging to detect, which often require input with specific
code structures with specific options.

Case Study. To demonstrate why JOpFuzzer can effec-
tively expose JIT compiler bugs, we perform a case study as
shown in Listing 2 [36]. Specifically, it shows the test case
that triggers bug JDK-8284883 discovered by JOpFuzzer
and Listing 2 shows the minimized version by the corre-
sponding developers. The JVM will crash by specifying op-
tions such as -Xcomp -XX:+UnlockDiagnosticVMOptions
-XX:-IdealizeClearArrayNode. The last option specified
will trigger JIT optimizations when array exists (line 3).

VI. DISCUSSION

Threats to validity. This study suffers from the following
main threats. First, our empirical study only involves instances
from HotSpot. Therefore, the empirical findings might not
generalize well to other JVM implementations. However,
we collected large-scale bug reports over the last decades,
including 26,243 previously reported bugs. Besides, HotSpot
is widely used, and more than 90% of JDK distributions use
HotSpot or HotSpot-based virtual machines [18]. Therefore,
the generalizability issue is mitigated due to the representa-
tiveness of HotSpot. Another threat concerns the evaluations.
For JavaTailor, we directly reuse the provided source code.
For classming, we carefully re-implemented it according to the
paper’s description and checked its correctness by reproducing
the original results to avoid potential bias. JOpFuzzer’s effec-
tiveness is affected by the selection of the initial seeds. For
example, some bugs require multiple nested loops with special
data types (e.g., high-dimensional arrays) to be triggered, and
these code structures cannot be easily obtained through muta-
tion. To mitigate the uncertainty introduced by the initial seed
selection, we generated multiple sets of seeds and repeated
our experiments three times.

Ethical Considerations. To facilitate developers debugging,
we submit detailed information such as the bug-triggering
options and error logs. We also perform bug reduction and
deduplication to our best before reporting bugs. Besides, to
avoid spamming the open-source community and the develop-
ers, we have carefully checked the reproducibility of bugs on
at least one long-term-support JVM before we submit them.
The developers have responded positively to our bug reports.

VII. RELATED WORK

JVM testing. Due to the importance of the JVM, much
research has been proposed to generate effective bug-revealing
test cases [8]–[10], [24], [37]–[39]. In addition to the
aforementioned classfuzz [8], classming [9] and JavaTai-
lor [10], there is plenty of work related to JVM testing.

Laurent et al. [40] extend an advanced mutation testing tool,
PITest [41], to enable it to record full information about the
mutant when the JVM crashes (e.g. failing and passing cases).
Then the authors utilize such information to predict which
features of the mutant are more likely to crash the JVM.
Hwang et al. [39] proposed JUSTGen, which generates test
cases to identify the unspecified behavior of JNI specification.

Optimization Exploration for Compilers. Much research
has focused on exploring optimization options to trigger
compiler bugs. Le et al. [42] proposed a randomized stress-
testing technique for detecting optimization bugs of GCC and
LLVM at link-time. Jiang et al. [43] proposed a technique
CTOS to detect compiler bugs when applying arbitrary opti-
mization sequences. CTOS aims to capture the information of
optimization sequences and the testing program and detect the
LLVM bugs by applying differential testing. Chen et al. [21]
proposed a tool, COTest, to detect compiler bugs for LLVM
and GCC. COTest adopts machine learning to model the
relationship between test programs and options, aiming to
predict the bug-triggering probability of a test program under
specific options. COTest has detected previously unknown
bugs of LLVM and GCC. However, we cannot use the above
approaches as our baselines because they rely on specific
features from compilers, which are unavailable from JVM. For
example, Proteus aims to test link-time bugs; CTOS utilizes
the IR generated by LLVM to capture the semantics of the
testing program; COTest utilizes options unique to the GNU
compiler (e.g., -O1,-O2,-O3). JOpFuzzer is the first study
that combines options and Java code features to test JVM,
which can inspire future JVM testing work.

VIII. CONCLUSION

In this work, we conducted a large-scale empirical study
over 26,243 real bugs collected from OpenJDK to understand
JVM JIT Compiler bugs. Our study reveals the significance
of JIT compiler bugs. Moreover, we observed that seed inputs
containing more specific code features are more likely to trig-
ger JIT compiler bugs, and often require certain optimization
configurations. Inspired by our empirical findings, we devise
a novel fuzzing approach, named JOpFuzzer, to detect JIT
compiler bugs by collectively exploring the two-dimensional
spaces of seeds and options. Extensive evaluations demonstrate
both the effectiveness and usefulness of JOpFuzzer.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
valuable comments. We also thank Liuchen Zhao, Shihan Dou
for their help to revise the paper and the JVM developers for
patiently analyzing the reported issues. This work is supported
by the Hubei Province Key R&D Technology Special Inno-
vation Project under Grant No. 2021BAA032, the National
Natural Science Foundation of China (Grant No. 62002125
and No. 62272400), the Young Elite Scientists Sponsorship
Program by CAST (Grant No. 2021QNRC001) and the Xi-
amen Youth Innovation Fund (Grant No. 3502Z20206036).
Ming Wen is the corresponding author.



REFERENCES

[1] “Language ranking,” 2021. [Online]. Available: https://madnight.github.
io/githut/#/pull requests/2021/3

[2] “Hotspot,” 2022. [Online]. Available: http://openjdk.java.net
[3] “Dragonwell,” 2022. [Online]. Available: https://github.com/alibaba/

dragonwell11
[4] “Openj9,” 2022. [Online]. Available: https://www.eclipse.org/openj9.
[5] “Zulu,” 2022. [Online]. Available: http://www.azulsystems.com/

products/zulu.
[6] A. Sonoyama, T. Kamiyama, M. Oguchi, and S. Yamaguchi,

“Performance study of kotlin and java program considering bytecode
instructions and JVM JIT compiler,” in Ninth International Symposium
on Computing and Networking, CANDAR 2021 - Workshops, Matsue,
Japan, 23-26 November 2021. IEEE, 2021, pp. 127–133. [Online].
Available: https://doi.org/10.1109/CANDARW53999.2021.00028

[7] “Jdk-8284879,” 2022. [Online]. Available: https://bugs.openjdk.java.net/
browse/JDK-8284879

[8] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, C. Krintz and E. D. Berger, Eds. ACM, 2016, pp. 85–99.
[Online]. Available: https://doi.org/10.1145/2908080.2908095

[9] Y. Chen, T. Su, and Z. Su, “Deep differential testing of jvm implemen-
tations,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 1257–1268.

[10] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang,
and L. Zhang, “History-driven test program synthesis for JVM
testing,” in 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 2022, pp. 1133–1144. [Online]. Available:
https://doi.org/10.1145/3510003.3510059

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: an automated end-to-end optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018, A. C. Arpaci-Dusseau and G. Voelker, Eds.
USENIX Association, 2018, pp. 578–594. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/chen

[12] M. Paleczny, C. A. Vick, and C. Click, “The java hotspot server
compiler,” in Proceedings of the 1st Java Virtual Machine Research
and Technology Symposium, April 23-24, 2001, Monterey, CA,
USA, S. Wold, Ed. USENIX, 2001. [Online]. Available: http:
//www.usenix.org/publications/library/proceedings/jvm01/paleczny.html

[13] K. Shiv, R. Iyer, C. Newburn, J. Dahlstedt, M. Lagergren, and
O. Lindholm, “Impact of JIT/JVM optimizations on java application
performance,” in 7th Annual Workshop on Interaction between
Compilers and Computer Architecture (INTERACT-7 2003), 8 February
2003, Anaheim, CA, USA. IEEE Computer Society, 2003, pp. 5–13.
[Online]. Available: https://doi.org/10.1109/INTERA.2003.1192351

[14] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator
for java JIT compiler test system,” in 3rd International Conference
on Quality Software (QSIC 2003), 6-7 November 2003, Dallas, TX,
USA. IEEE Computer Society, 2003, p. 20. [Online]. Available:
https://doi.org/10.1109/QSIC.2003.1319081

[15] “C2 ir graph and nodes,” 2022. [Online]. Available: https://wiki.
openjdk.java.net/display/HotSpot/C2+IR+Graph+and+Nodes

[16] “Jdk bug priority,” 2021. [Online]. Available: https://wiki.openjdk.org/
display/jmc/ILW+Prioritization

[17] E. G. Sirer and B. N. Bershad, “Using production grammars in
software testing,” in Proceedings of the Second Conference on
Domain-Specific Languages (DSL ’99), Austin, Texas, USA, October
3-5, 1999, T. Ball, Ed. ACM, 1999, pp. 1–13. [Online]. Available:
https://doi.org/10.1145/331960.331965

[18] “2022 java developer productivity report,” 2022.
[Online]. Available: https://www.jrebel.com/resources/
java-developer-productivity-report-2022

[19] “Jdk bug system,” 2022. [Online]. Available: https://bugs.openjdk.java.
net/secure/Dashboard.jspa

[20] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier,
“SPOON: A library for implementing analyses and transformations of
java source code,” Softw. Pract. Exp., vol. 46, no. 9, pp. 1155–1179,
2016. [Online]. Available: https://doi.org/10.1002/spe.2346

[21] J. Chen and C. Suo, “Boosting compiler testing via compiler
optimization exploration,” ACM Trans. Softw. Eng. Methodol., vol. 31,
no. 4, pp. 72:1–72:33, 2022. [Online]. Available: https://doi.org/10.
1145/3508362

[22] A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng, N. P. Ricci,
and W. Binder, “Characteristics of dynamic JVM languages,” in
VMIL@SPLASH ’13: Proceedings of the 7th ACM workshop on
Virtual machines and intermediate languages, Indianapolis, IN, USA,
28 October 2013, C. Bockisch, M. Haupt, S. Blackburn, H. Rajan,
and J. Gil, Eds. ACM, 2013, pp. 11–20. [Online]. Available:
https://doi.org/10.1145/2542142.2542144

[23] L. Zhang and C. Krintz, “Profile-driven code unloading for resource-
constrained jvms,” in Proceedings of the 3rd International Symposium
on Principles and Practice of Programming in Java, PPPJ 2004,
Las Vegas, Nevada, USA, June 16-18, 2004, ser. ACM International
Conference Proceeding Series, J. Waldron, Ed., vol. 91. ACM, 2004, pp.
83–90. [Online]. Available: https://dl.acm.org/citation.cfm?id=1071581

[24] A. W. Wade, P. A. Kulkarni, and M. R. Jantz, “Exploring impact
of profile data on code quality in the hotspot JVM,” ACM Trans.
Embed. Comput. Syst., vol. 19, no. 6, pp. 48:1–48:26, 2020. [Online].
Available: https://doi.org/10.1145/3391894

[25] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani,
“Design and evaluation of dynamic optimizations for a java just-in-time
compiler,” ACM Trans. Program. Lang. Syst., vol. 27, no. 4, pp.
732–785, 2005. [Online]. Available: https://doi.org/10.1145/1075382.
1075386

[26] A. W. Wade, P. A. Kulkarni, and M. R. Jantz, “AOT vs. JIT: impact
of profile data on code quality,” in Proceedings of the 18th ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, LCTES 2017, Barcelona, Spain, June 21-22,
2017, V. Nagarajan and Z. Shao, Eds. ACM, 2017, pp. 1–10. [Online].
Available: https://doi.org/10.1145/3078633.3081037

[27] X. Ren, M. Ho, J. Ming, Y. Lei, and L. Li, “Unleashing the
hidden power of compiler optimization on binary code difference: an
empirical study,” in PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 2021, S. N. Freund and
E. Yahav, Eds. ACM, 2021, pp. 142–157. [Online]. Available:
https://doi.org/10.1145/3453483.3454035

[28] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 522–532, 1998.
[Online]. Available: https://doi.org/10.1109/34.682181

[29] “Javafuzzer test generator,” 2022. [Online]. Available: https://github.
com/shipilev/JavaFuzzer

[30] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, D. Zhang
and A. Møller, Eds. ACM, 2019, pp. 31–42. [Online]. Available:
https://doi.org/10.1145/3293882.3330577

[31] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
1–11. [Online]. Available: https://doi.org/10.1145/3180155.3180233

[32] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and
H. Jin, “Automated patch correctness assessment: How far are we?”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 968–980. [Online].
Available: https://doi.org/10.1145/3324884.3416590

[33] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change
embedding for better patch correctness assessment,” ACM Trans.
Softw. Eng. Methodol., vol. 31, no. 3, may 2022. [Online]. Available:
https://doi.org/10.1145/3505247

[34] “Openjdk8,” 2022. [Online]. Available: https://github.com/openjdk/
jdk8u

[35] G. Kondoh and T. Onodera, “Finding bugs in java native interface
programs,” in Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA,
USA, July 20-24, 2008, B. G. Ryder and A. Zeller, Eds. ACM, 2008, pp.
109–118. [Online]. Available: https://doi.org/10.1145/1390630.1390645



[36] “Jdk-8284883,” 2022. [Online]. Available: https://bugs.openjdk.java.net/
browse/JDK-8284883

[37] T. Brennan, S. Saha, and T. Bultan, “JVM fuzzing for jit-induced
side-channel detection,” in ICSE ’20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 1011–1023. [Online].
Available: https://doi.org/10.1145/3377811.3380432

[38] J. Zhao, Y. Wen, X. Li, L. Pang, X. Kuang, and D. Wang, “A heuristic
fuzz test generator for java native interface,” in Proceedings of the
2nd ACM SIGSOFT International Workshop on Software Qualities and
Their Dependencies, SQUADE@ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26, 2019, S. Sentilles, B. W. Boehm, C. Trubiani,
and A. Koziolek, Eds. ACM, 2019, pp. 1–7. [Online]. Available:
https://doi.org/10.1145/3340495.3342749

[39] S. Hwang, S. Lee, J. Kim, and S. Ryu, “Justgen: Effective test
generation for unspecified JNI behaviors on jvms,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,

Spain, 22-30 May 2021. IEEE, 2021, pp. 1708–1718. [Online].
Available: https://doi.org/10.1109/ICSE43902.2021.00151

[40] T. Laurent, F. Wall, and A. Ventresque, “On the impact of timeouts
and JVM crashes in pitest,” in 13th IEEE International Conference on
Software Testing, Verification and Validation Workshops, ICSTW 2020,
Porto, Portugal, October 24-28, 2020. IEEE, 2020, pp. 247–253.
[Online]. Available: https://doi.org/10.1109/ICSTW50294.2020.00050

[41] “Pitest,” 2022. [Online]. Available: http://pitest.org/
[42] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time

optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA, July
12-17, 2015, M. Young and T. Xie, Eds. ACM, 2015, pp. 327–337.
[Online]. Available: https://doi.org/10.1145/2771783.2771785

[43] H. Jiang, Z. Zhou, Z. Ren, J. Zhang, and X. Li, “CTOS: compiler
testing for optimization sequences of LLVM,” IEEE Trans. Software
Eng., vol. 48, no. 7, pp. 2339–2358, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2021.3058671


