
Understanding the Threats of Upstream
Vulnerabilities to Downstream Projects in the

Maven Ecosystem
Yulun Wu1‡†, Zeliang Yu1‡†, Ming Wen1‡∗, Qiang Li1, Deqing Zou1‡, Hai Jin2‡

1School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
2School of Computer Science and Technology, Huazhong University of Science and Technology, China

Email:{alanwu, zeliangyu, mwenaa, liqiang, deqingzou, hjin}@hust.edu.cn

Abstract—Modern software systems are increasingly relying
on dependencies from the ecosystem. A recent estimation shows
that around 35% of an open-source project’s code come from its
depended libraries. Unfortunately, open-source libraries are often
threatened by various vulnerability issues, and the number of
disclosed vulnerabilities is increasing steadily over the years. Such
vulnerabilities can pose significant security threats to the whole
ecosystem, not only to the vulnerable libraries themselves, but
also to the corresponding downstream projects. Many Software
Composition Analysis (SCA) tools have been proposed, aiming
to detect vulnerable libraries or components referring to existing
vulnerability databases. However, recent studies report that such
tools often generate a large number of false alerts. Particularly,
up to 73.3% of the projects depending on vulnerable libraries are
actually safe. Aiming to devise more precise tools, understanding
the threats of vulnerabilities holistically in the ecosystem is
significant, as already performed by a number of existing studies.
However, previous researches either analyze at a very coarse
granularity (e.g., without analyzing the source code) or are
limited by the study scales.

This study aims to bridge such gaps. In particular, we collect
44,450 instances of ⟨CVE, upstream, downstream⟩ relations and
analyze around 50 million invocations made from downstream
to upstream projects to understand the potential threats of
upstream vulnerabilities to downstream projects in the Maven
ecosystem. Our investigation makes interesting yet significant
findings with respect to multiple aspects, including the reach-
ability of vulnerabilities, the complexities of the reachable paths
as well as how downstream projects and developers perceive
upstream vulnerabilities. We believe such findings can not only
provide a holistic understanding towards the threats of upstream
vulnerabilities in the Maven ecosystem, but also can guide future
researches in this field.

Index Terms—Maven, Ecosystem Security, Vulnerability

I. INTRODUCTION

The past two decades have witnessed a surge of software
reuse. An increasing number of third-party libraries (TPL)
have been released under open-source licenses, and the devel-
opment of such libraries heavily depend on the infrastructures
or functional components of each other. A recent estimation
reveals that around 35% of an open-source project’s code come
from its depended libraries on average [1]. The numerous

‡ Hubei Key Laboratory of Distributed System Security, Hubei Engineering
Research Center on Big Data Security, National Engineering Research Center
for Big Data Technology and System, Services Computing Technology and
System Lab, Cluster and Grid Computing Lab.

† Equal Contribution; ∗ Corresponding author

diverse libraries and their complex dependency relations natu-
rally form large-scale social-technical ecosystems, the famous
of which are the Maven for Java, npm for JavaScript, and
et al. For instance, the Java ecosystem, managed mainly by
Maven, has indexed over 9.51 million third-party libraries [2],
which have been facilitating the development of Java projects
significantly for a long period.

Unfortunately, TPLs also suffer from various vulnerability
issues, and the number of disclosed vulnerabilities in open-
source libraries has been increasing steadily since 2009 [3].
Such vulnerabilities can pose significant security threats to
the whole ecosystem, not only to the vulnerable libraries
themselves, but also to the corresponding downstream projects
(i.e., if we regard a library as an upstream, those libraries
depend on this upstream are denoted as the corresponding
downstream). It has been estimated that around 74.95% of the
TPLs that contain vulnerabilities are widely utilized by other
libraries [4]. For instance, the recently spotted vulnerabilities
in Apache Log4j2 [5], have affected over 35,000 Java pack-
ages, amounting to over 8% of the Maven ecosystem [6]. The
growing trend of the vulnerabilities discovered in open-source
libraries results in the inclusion of “vulnerable and outdated
components” in the OWASP Top 10 Web Application Security
Risks [7], which is still ranked at sixth currently.

The increasing number of exposed vulnerabilities in open-
source libraries and the high-risk threats they pose to the
ecosystem have attracted increasing attention from both the
industry and academia. Automated tools aiming for detecting
and assessing the vulnerabilities in open-source projects are
booming over recent years, such as Dependency-Check [8]
(a.k.a. OWASP DC) and Snyk [9]. The basic intuition behind
most of these tools is to perform Software Composition Anal-
ysis (SCA) by analyzing the dependency configuration file or
the information gathered during compilation, and then search
for vulnerable components referring to existing vulnerabil-
ity databases (e.g., National Vulnerability Database (NVD)).
Warnings will be reported to developers once known vulner-
able dependencies are detected, and developers are suggested
to take mitigation actions such as upgrading the dependency
to non-vulnerable versions.

However, recent studies spot that such tools often generate
a high number of false alerts since they mainly work at a



coarse granularity without analyzing whether the upstream
vulnerabilities will actually affect the corresponding down-
stream projects [10]. In particular, Zapata et al. revealed that in
the node.js ecosystem, up to 73.3% of the projects depending
on vulnerable TPLs are actually safe [10]. Ponta et al. also
revealed that 88.8% of the warnings generated by OWASP
DC are false positives. Such a high rate of false positives
will annoy developers, and our user study also confirms that
some developers are bothered by such imprecise warnings and
take unnecessary actions simply to get rid of such warnings
(see Section VI-B). Even worse, such warnings will lead to
unwanted upgrade of dependencies, which might further intro-
duce other dependency conflicts or incompatibility issues [11],
[12], [13], [14]. Therefore, tools that are able to assess the
security threats of upstream vulnerabilities to downstream
projects more precisely are much desired.

To serve for such a practical need, we are motivated to
perform a holistic and quantitative study to understand the
threats of upstream vulnerabilities on downstream projects in
the Maven ecosystem. We choose Java since it remains to be
one of the most popular languages over the decades [15], and
the ecosystem is also managed by matured tools (e.g., Maven).
In particular, we perform analysis at a finer granularity at the
source code level to understand to what extent are downstream
projects threatened by upstream vulnerabilities in the ecosys-
tem. Our main objective is to understand the risk of upstream
vulnerabilities being exploited in downstream projects, and to
develop a method for assessing this likelihood. In particular,
we investigate from multiple aspects, including whether the
downstream projects are reachable to upstream vulnerabilities
as well as the complexity of those constraints along the reach-
able paths. Besides, we also perform quantitative analysis and
a user study to understand how downstream projects perceive
upstream vulnerabilities, including the responses they make,
the behind reasons as well as the developers’ concerns. To
enable the above analysis, we collect a large-scale dataset from
the Maven ecosystem, including 832 CVEs with 1,078 patches
corresponding to 613 different libraries in the ecosystem. We
also collect another 29,952 unique downstream projects that
depend on the above vulnerable libraries as upstreams. Such
instances form 44,450 triplet relations of ⟨CVE, upstream,
downstream⟩ (see Section III-A for more details). To our best
knowledge, this is the largest dataset concerning the number
of CVE with patches in the Java ecosystem together with the
substantial upstream/downstream relations. Our study mainly
makes the following interesting yet significant findings.

1) Only around 25.7% of the libraries, the vulnerable func-
tions can be reached by at least one of its downstream
projects. On average, an vulnerable library affects 10.4%
of its downstream projects. Among all the vulnerable
functions, most of them actually cannot be reached by
any of the downstream projects (i.e., 86.1%), and thus
the security threats to other projects are limited.

2) Over half of the reachable instances, the length of the
invocation path is more than five. For 27.3% of the reach-

able invocation paths, there are more than 10 associated
constraints that are required to be satisfied in order to
reach the vulnerable functions. Among such constraints,
39.5% of the variables are reference types, indicating that
such constraints cannot be easily solved.

3) Via investigating among 49,766,554 invocations from
downstream to upstream in the ecosystem, we find that
only around 4.4% are risky that are reachable to upstream
vulnerabilities. For 27.1% of such risky invocations, the
return value will further propagate in downstream projects
(e.g., passed as parameters to other functions).

4) Before the discovery of a CVE in the ecosystem, the
downstream projects have utilized the vulnerable up-
stream for 986 days on average. Upon the release of the
CVE, 86.0% of the downstream have taken action such
as upgrading the vulnerable versions. The response speed
varies with an average time of 270 days.

5) Most of the downstream developers (67.0%) are aware of
upstream vulnerabilities thanks to the wide adoption of
SCA tools. However, existing SCA tools often achieve
high positive rates. To assess the security threats of
upstream vulnerabilities, most of the developers perform
manual analysis based on their domain knowledge. There-
fore, it still calls for precise automated tools to help assess
the security threats in the ecosystem.

In summary, we make the following main contributions:
• Large-scale dataset. Aiming to understand the threats of

upstream vulnerabilities to downstream projects, we col-
lect a large-scale dataset from multiple sources, forming
44,450 relations of ⟨CVE, upstream, downstream⟩. We
open-source this dataset to facilitate future researches at:
https://github.com/CGCL-codes/MavenEcoSysResearch.

• Empirical findings. We perform a fine-granularity study
to understand the reachability of upstream vulnerabilities
from the perspective of downstream projects and distill
a series of original yet interesting findings based on our
empirical analysis. Such findings cannot only provide a
holistic view towards the threats of upstream vulnerabil-
ities to downstream projects in the Maven ecosystem but
also can guide future researches in this field.

• Practical implications. We also perform a user study
to understand how downstream developers perceive up-
stream vulnerabilities. Based on the study and the find-
ings above, we provide several practical implications to
different stakeholders of the software supply chain.

II. BACKGROUND & MOTIVATION

A. The Maven Ecosystem

Java remains to be one of the most popular languages over
the decades [15]. One major reason that contributes to the
massive success of Java is its open-source ecosystem, which
has attracted active contributions from many developers, thus
forming a huge and complex ecosystem. Therefore, numer-
ous Java third-party libraries (TPL) have been developed.
Maven is now the most widely adopted management tool



Vulnerable Function

commons-io:commons-io
Affected Version:< 2.7

getPrefixLength()

CVE-2021-29425

API

org.kohsuke:github-api
[1.106,1.128] 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 2.4
[1.129,1.307] 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 2.8

API…

org.umlg:runtime-domain-sqlg
𝑎𝑙𝑙 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 ≤ 2.6

API …

add() equalsNormalized() …

net.sourceforge.pmd:pmd-core
𝑎𝑙𝑙 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 ≤ 2.6

commitFile()concat()

org.openhubframework:openhub-core
2.0.0, 2.2.0 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 2.4
≥ 2.3.0 𝑟𝑒𝑙𝑖𝑒𝑠 𝑜𝑛 2.7

public static String concat(……) {
int prefix = getPrefixLength(……);
if (prefix < 0) {
……

Risky Function

Non-Vulnerable Function

Risky Invocation

Downstream Projects Downstream Projects
1 2

3 4

Upstream Project

Response

Fig. 1: Vulnerable upstream project commons-io and four of its downstream projects

for the Java ecosystem [2]. Currently, Maven has indexed
over 9.51 million Java libraries [2], and each of them can
be differentiated by a unique identifier, which is denoted
as GAV (i.e., GroupId:ArtifactId:Version). Developers can
conveniently utilize a package by specifying the corresponding
GAV of the package in the configuration files (e.g., pom.xml).

B. Library Vulnerabilities and Their Threats

The recently spotted vulnerabilities in Apache Log4j2 [5],
have affected over 35,000 Java packages, amounting to over
8% of the Maven ecosystem. Due to the pervasiveness of
such critical vulnerabilities in TPLs and their extensive usage
in the ecosystem, it is crucial to understand the impact of
exposed vulnerabilities on other projects in the ecosystem.
To help mitigate the threats of known vulnerabilities to other
projects in the ecosystem, many automated tools have been
proposed. For instance, OWASP DC is a widely-used SCA
(Software Composition Analysis) tool in Maven [8], which
attempts to detect vulnerable dependencies containing exposed
vulnerabilities. Other SCA tools such as Snyk [9] and Github
Dependabot [16] perform similar analyses but mainly differ
in the vulnerability database they provide. Such tools will
report for a project once its dependencies contain disclosed
vulnerabilities and warn the corresponding developers to take
actions, such as upgrading the version of the concerned
dependencies. However, even if a project relies on vulnerable
dependencies, it does not mean that the project will be
actually affected by the vulnerabilities [10]. For such cases,
upgrading/downgrading dependencies might be unnecessary,
which might even introduce dependency conflicts [17], [18],
[19] or compatibility issues [20], [21].

C. A Motivating Example

We use vulnerability CVE-2021-29425 exposed in project
commons-io as an example to motivate this work. The vul-
nerability affects the versions below 2.7 of commons-io. It is
introduced since developers forget to check the validity of the
host name in function getPrefixLength(), which exhibits
a high chance of introducing a path traversal vulnerability.
Project commons-io, as an upstream library, has been utilized
by 23,974 other projects (denoted as the downstream projects)
in the ecosystem as indexed by Maven, and among which
over 14,000 of them utilize those versions that are affected by
CVE-2021-29425. For the affected version 2.4 only, it has
been utilized by 4,386 downstream projects. Fig. 1 shows

four examples of those downstream projects. Via manually
analyzing this vulnerability and the corresponding affected
downstream projects, we can make the following observations.

First, certain downstream projects that rely on a vulnerable
upstream are actually not threatened by the vulnerability. As
shown in Fig. 1, although all the four downstream projects
depend on the vulnerable version of commons-io (i.e., ver-
sion 2.4), not all of them can actually reach the vulnerable
code. For pmd-core and openhub-core, they can reach
the vulnerable function getPrefixLength() transitively. On
the contrary, the other two projects (i.e., github-api and
runtime-domain-sqlg) cannot access the vulnerable func-
tion by all means. Existing tools as aforementioned [8],
[9], [16] will report for all the downstream projects to be
vulnerable since they ignore the reachability to the vulnerable
code, thus resulting in false positives.

Second, even if the vulnerable function is reachable from
downstream projects, the chance of exploitability is differ-
ent. Fig.1 shows the corresponding call graphs for the two
projects that are reachable to the vulnerable function. As can
be seen, the downstream transitively invoke the vulnerable
function through other APIs such as equalsNormalized()
and concat(). In particular, for pmd-core, it passes through
four other functions to reach the vulnerable function while
openhub-core only passes through one. Along the reachable
call path, various constraints are required to be satisfied to
reach the vulnerable code. Particularly, three constraints should
be satisfied for pmd-core, which are filename1!=null,
filename2!=null and size!=0. On the contrary, for project
openhub-core, it can reach the vulnerable function directly
without constraints once the invocation to concat() can
be triggered. Such constraints along the path restrain the
vulnerability from being exploited in downstream projects, and
thus the complexity of them can reflect the extent to which
the downstream is threatened by the vulnerability.

Third, downstream developers take various action in re-
sponse to upstream vulnerabilities. As aforementioned, project
openhub-core is reachable to the vulnerable function of
CVE-2021-29425 without other constraints along the path. We
observe that out of security reasons, the project has upgraded
the depended version of commons-io from 2.4 directly to 2.7,
in which the vulnerability has been patched, since version 2.3.0
of openhub-core. However, for project pmd-core which is
also reachable to the vulnerable function, we do not observe
any action taken by developers in response to the vulnerability.



On the contrary, project github-api, which is not reachable
to the vulnerable function, has upgraded the depended version
from 2.4 to 2.8. Therefore, it triggers our great interest to
investigate the distributions of such downstream responses
to upstream vulnerabilities and the behind reasons of such
responses.

Based on the above analysis, we are motivated to investigate
the pervasiveness of such observations among the whole
Maven ecosystem. In particular, we are interested to answer
the following research questions.

• RQ1. How is the reachability of downstream projects to
the upstream vulnerabilities in the Maven ecosystem?

• RQ2. How hard it is for downstream projects to reach
upstream vulnerabilities?

• RQ3. How do downstream developers respond to exposed
vulnerabilities in upstream projects?

Answering such questions can bring the following benefits.
First, it can provide all users of Maven a holistic view
towards the extent to which current projects are threatened
by upstream vulnerabilities in terms of reachability. Second, it
can reveal the characteristics concerning the exploitability of
upstream vulnerabilities, and further facilitate the construction
of models to assess the threats of upstream vulnerabilities.
Such assessment models can help reduce the false positives
of existing automated tools (e.g., SCA tools). Third, it can
help understand how downstream projects and developers
perceive upstream vulnerabilities. Eventually, it can facilitate
the security assurance of vulnerabilities across various projects
and ensure supply chain security in the Maven ecosystem.

III. STUDY METHODOLOGY

In this Section, we first present the dataset construction to
facilitate such a large-scale empirical study. We then present
the employed methodologies to answer the designed questions.

A. Data Collection

To perform a large-scale study to understand to what extent
are downstream projects affected by upstream vulnerabilities,
we need to construct a dataset of known vulnerabilities of
open-source projects, which, particularly, should satisfy the
following criteria. First, the corresponding patches should be
available since patches are required to identify the vulnerable
components and functions, which are used to investigate the
reachability of those vulnerabilities from the perspective of
downstream projects. Second, the vulnerable project should be
indexed by Maven, which can be used as upstream projects by
other downstream ones. Third, the vulnerable upstream should
be used by a sufficient number of downstream projects to fa-
cilitate our analysis. Specifically, we construct the benchmark
dataset as follows.

1) Vulnerability Collection: We first collect a set of ex-
posed vulnerabilities with patches. We observe that there are
many existing studies that have created different datasets of
vulnerabilities with patches of Java open-source projects [22],
[23], [24], [25], and each of them contains hundreds of CVEs
with patches. After deduplication, we extract 993 unique CVEs

with 2,084 different patches (i.e., a patch refers to the fixing
commit of the CVE) from the existing four studies. Aiming to
create a larger dataset, we find that the Veracode vulnerability
database [26] also provides the information of CVEs with the
corresponding patches as well as the vulnerable versions of
the upstream project. Therefore, we implement a crawler to
automatically extract CVEs with patches from this dataset and
enhance the number of CVEs from originally 993 to 1,647
with 2,813 different patches.

To further expand the dataset, we implement a crawler based
on the following two heuristics. 1) Searching the commit log
message of Java open-source projects to see if it contains the
information for fixing specific CVEs. 2) Searching the official
webpage of open-source projects (if have) to look for CVE
information. Using the crawler, we further enhance the number
of CVE entries from 1,647 to 1,834 after deduplication.

We further manually check all the collected instances and
remove certain invalid data. For instance, the links to certain
commits might be invalid. Besides, some fixing patches with
different commit IDs might be the same since they refer to
the patches at different branches. Eventually, we select 1,712
unique CVEs with 3,448 different patches after filtering.

2) Vulnerable Function Localization: We then obtain the
affected vulnerable functions based on the code modifications
performed by the CVE patches. Identifying the vulnerable
functions is necessary since we need to analyze the reach-
ability of vulnerabilities as well as their potential threats.
In particular, we deem a function vulnerable if it exists in
the version before the CVE patch is employed and has been
modified or deleted by the patch. For those newly introduced
functions by the fixing patches, we do not regard them as
vulnerable, following existing studies to localize vulnerable
functions [27], [28], [29], [30]. Unfortunately, we observe
that there are many patches that perform function-irrelevant
modifications. For instance, some patches do not modify any
Java source file while editing the configuration files instead.
After removing such cases, 1,421 CVEs with 2,217 patches
have been left.

3) Affected GAV Identification: Many Java projects consist
of multiple components, and each of them will be released
as an individual jar file and identified by a unique GAV
(i.e., GroupId:ArtifactId:Version) in Maven, a different naming
system from CPE (i.e., Common Platform Enumeration) pro-
vided by NVD. The GAV is required to search for downstream
projects in Maven. However, except for the Veracode vulner-
ability which provides GAV for each upstream of CVE, it is
non-trivial to obtain the GAV identifier directly based on the
corresponding patch of other sources. In this study, we choose
to identify the affected component via manual analysis, Except
for patches provided by Veracode, others have no off-the-shelf
mapped GAV information. Therefore, we handle it manually
following two steps. First, we check the repository of the patch
to obtain the metadata information (e.g. pom file) and identify
possible GAVs. Second, we download the corresponding jar
from Maven based on the identified GAVs and decompress
it to check whether the jar indeed matches the patch. These



DOWN UP
0

50
100
150
200
250
300
350

Versions

DOWN UP
0

2

4

6

8

1e6 Size

DOWN UP

1K

2K

3K

4K

5K
Usage

DOWN UP
0

250
500
750

1000
1250
1500
1750
2000

Classes

DOWN UP
0

2.5K
5.0K
7.5K

10.0K
12.5K
15.0K
17.5K

KLOC

Fig. 2: Statistics of our collected dataset

two steps filtered out many instances since our primary goal
is to construct a precise dataset with as few noises as possible.
Eventually, we kept 1,085 CVEs corresponding to 839 unique
artifacts in the Maven ecosystem after this step.

4) Downstream Software Collection: We construct the de-
pendency graph of the entire Maven ecosystem using Eclipse
Aether [31] to obtain the dependency relationship. Notably,
we randomly select one version of the same downstream
software that depends on certain upstream software to avoid
data redundancy, and we further filter out the downstream that
share the same GroupID with the upstream [32], for they most
likely come from one project, which might introduce bias for
our analysis. This step filters those upstream software that has
no downstream software.

Finally, we keep 832 CVEs with 1,078 patches correspond-
ing to 613 different upstream software in the ecosystem. On
average, for each upstream, we collect 52 different downstream
projects, thus forming 44,450 triplet instance of ⟨CVE, up-
stream, downstream⟩. Those relations concern 29,952 unique
downstream projects since a downstream might rely on mul-
tiple vulnerable upstreams. Fig. 2 shows the statistics of our
collected data. It shows that the included upstream and down-
stream projects are (1) large-scale (upstream contains 75.6
KLOC on average with 1,082 classes); (2) well-maintained (an
upstream release 117 versions on average while a downstream
release 25); (3) impactful (over 37.4% of the upstream have
over 500 direct usages).

B. Methodology

To answer the research questions as listed in Section II, we
employ the following methodologies.

1) RQ1:Reachability: To understand the reachability of
downstream projects to upstream vulnerabilities for each
instance, we first analyze the CVE patches to extract the
vulnerable function. A function that contains a vulnerability
(i.e., modified by the corresponding vulnerability fixing patch)
is denoted as a vulnerable function. We then construct the call
graph (CG) for the upstream and downstream using Soot [33],
a widely used tool to construct Java bytecode CG [34], [35],
with the Spark (Soot Pointer Analysis Research Kit) and
turn the option on-fly-cg on to make the constructed CG
more precise. We then investigate whether there exists paths
from the downstream to the upstream vulnerable functions. In
particular, we define the following concepts and extract the
corresponding information.

Reachability. A function p is reachable to another function
q if there exists a path from p to q in the corresponding CG,
and we denote such a path as reachable CG path.

Risky Invocation. An invocation to an upstream API in
the downstream is risky if the invoked API is vulnerable or
is reachable to any vulnerable function in the upstream. As
shown in Fig. 1, invocations to concat() made in function
commitFile() and equalsNormalized() in add() are risky
since they can all reach the vulnerable function.

Risky Function. Risky Functions (RF) refer to those down-
stream functions that make direct invocations to upstream
APIs and the invoked APIs are vulnerable or reachable to
any vulnerable functions of the upstream. RFs are the entries
for downstream projects to access upstream vulnerabilities. As
explained above, commitFile() and add() in Fig. 1 are risky
functions since they make risky invocations.

Downstream projects become vulnerable through risky in-
vocations. Such risky invocations and functions can reflect
whether the downstream is reachable to the upstream vulnera-
bilities. Therefore, we extract the above information from the
dataset and analyze their distributions to answer RQ1.

2) RQ2:Reachable Constraint and Contexts: In RQ1, we
merely investigate the reachability in terms of CG path. How-
ever, it is not necessary that the vulnerability can be exploited
even if it is reachable since those constraints along the path
as well as the context of the risky invocations can restrain
the vulnerability from being exploited in downstream projects.
Therefore, in this RQ, we are motivated to investigate at a finer
granularity by inspecting the code at each function along the
CG path. Specifically, we construct the inter-procedure control
flow graph (ICFG) for each reachable CG path, extract the
associated constraints and then characterize their features. In
particular, we perform our analysis from three perspectives.

First, we investigate the reachable ICFG path ratio, which
is measured by the number of paths in the ICFG that are
reachable to the vulnerable function over the total number of
paths for each reachable CG path. A higher ratio indicates
higher threats since the chance from the risky invocation to
the vulnerable functions is higher. To tackle the path explosion
problem [36], we unroll loops only once [37] and eliminate
paths with contradicted constraints. However, the paths can
still be explosive since our analyzed subjects are often complex
and in large-scales. To avoid this problem, we regard the ratio
as 0 if the total number of different paths exceeds 105.

Second, we characterize the constraints associated with each
reachable ICFG path, including the number of constraints,
the type of operators and variables involved. Finally, we
investigate the contextual information surrounding the risky
invocations in the downstream. Specifically, we investigate
whether the risky invocation is guarded by any if checkers or
try-catch statements (guarded/not guarded). If so, the security
threats induced by the risky invocation might be mitigated.
We also investigate if the return value of the risky invocation
or its tainted values propagates (e.g., through value return or
passing to other functions as parameters) in the downstream.



If such cases are observed, the security threats induced by the
risky invocation might be worsened.

3) RQ3:Downstream Response: In this RQ, we aim to
understand whether the downstream projects have taken action
in response to those vulnerable upstreams. For each CVE, we
know the affected versions of the corresponding vulnerable
upstream (see Section III-A). Therefore, we denote those
modifications in the downstream that change the dependency
of the vulnerable upstream from affected versions to unaffected
versions as responses. Such modifications usually include
upgrading/downgrading the versions of the dependency or
removing the vulnerable dependency [38], [39]. As shown in
Fig.1, downstream projects openhub-core and github-api
have made responses to the vulnerable upstream. Specifically,
they have upgraded the dependency from affected versions to
unaffected ones (i.e., the affected versions are (, 2.7)).

To answer this RQ, we first identify the corresponding
GitHub repository from libraries.io [40] for each GAV in
our dataset. Be noted that we exclude those instances whose
repository information cannot be identified (24k instances
left). Moreover, one repository sometimes may corresponds
to several GAVs, and we guarantee that one repository occurs
only once in our dataset. It is because including a repository
multiple times might cause bias to our empirical investigation
since the contributors are the same, after which we keep
13k instances. We also remove those projects that are not
actively maintained since such projects are less likely to
contain useful information towards security maintenance. In
particular, we only keep those repositories that contain more
than 100 commits and also contain at least one commit within
one year after the corresponding CVE is published. Finally, we
keep 4,073 instances ⟨CVE, upstream, downstream⟩ for our
analysis in this RQ. Specifically, we mine from the commits
of the repository to see if they contain targeted responses as
defined above, and then investigate the distributions of the
response ratio and speed of downstream projects.

However, we find that the behind intuitions for such re-
sponses (i.e., modifying the dependency of the vulnerable
upstream) are complex (e.g., resolving dependency conflicts
issues [41], [42]) and developers usually do not specify spe-
cific intentions when modifying such dependencies. Despite
the fact that such responses can relieve the downstream project
from being affected by the vulnerable upstream, whether
the intention of such commits are actually related to the
vulnerability issue remains unknown. Therefore, it further
motivates us to perform a user study to further understand
the real intention of such extracted responses.

In particular, we randomly send the questionnaire to 500
developers who make the response to the CVE (e.g., commit-
ting the changes in response to the vulnerable dependency)
from 714 developers responding to CVEs in recent three years.
For those downstream projects which have not taken any
responses, we send an email to the developer with the most
contributions to the configuration file, and finally select 500
random developers from 725 developers without a response.
The behind reason is to make a trade-off between guaranteeing

a comprehensive survey and avoiding spamming the open-
source community out of ethical considerations, and thus we
choose not to send it to every developer. We expect to receive
100 to 150 replies, and believe this is adequate (as other
studies [38], [39] usually perform user studies at similar or
smaller scales). As an existing study indicates [39], the reply
rate is often between 14%-20%, and therefore we send 1,000
emails in total, with response/no response to the upstream
vulnerability half to half.

The questionnaire is sent to the selected developers by
email, specifying the downstream software, the upstream soft-
ware that contains the vulnerability, and the corresponding
CVE. Eventually, we receive 64 emails from those developers
with responses to the CVE and 45 emails without, leading
to a response ratio of 10.9%. Particularly, we are interested
to know whether downstream developers are aware of the
upstream CVE, the real intention behind the responses, and
how they usually assess the security threats.

IV. RQ1:VULNERABILITY REACHABILITY

In this Section, we analyze the reachability of downstream
projects to the upstream vulnerabilities. In particular, we
investigate from the perspective of upstream and downstream
respectively to understand the threats of exposed vulnerabili-
ties in the ecosystem.

A. Upstream Vulnerability

To understand the extent to which the upstream vulnerabili-
ties are accessed by the downstream projects, we first analyze
them from the perspective of upstream vulnerabilities. In
particular, we analyze the distributions from two granularities,
vulnerable function and vulnerable upstream.
Vulnerable Function. As aforementioned in Section III-A, we
in total collect 2,990 vulnerable functions in this study, and
Fig. 3 shows the distributions of them that can be accessed by
the corresponding downstream projects separated by different
modifiers. On average, 2.9% of the vulnerable functions can
be directly accessed while 11.0% can be transitively accessed.
Besides, vulnerable functions with all types of modifiers, in-
cluding those private and default functions that are not visible
to downstream projects, can also be accessed by downstream
projects either directly or transitively. The direct access ratio
is the highest (i.e., 4.8%) for public vulnerable functions. It
falls into our intuition that such cases can pose great threats
to the downstream projects since the vulnerable functions can
be directly accessed by the corresponding downstream.

Finding 1. Most of the vulnerable functions (i.e., 86.1%) ac-
tually cannot be accessed by the corresponding downstream
projects, thus posing no security threats to the downstreams.
Moreover, private and default vulnerable functions can
also to be reached (transitively) by downstream projects.

Vulnerable Upstream. As for the vulnerable upstream project,
we find that 9.9%, and 22.9% of them can be directly or
transitively accessed by downstreams respectively. Moreover,
three libraries that can be accessed are found to be the top 10



final default protected static private public all
0.2

0
0.2
0.4
0.6
0.8
1.0

Re
ac

ha
bl

e 
Ra

tio
Direct Transitive No

102

103

#V
ul

ne
ra

bl
e 

Fu
nc

tio
n#Vulnerable function

Fig. 3: The reachable ratio for vulnerable functions with
different modifiers, the line shows the amount of functions.

popular project [43] in the Maven ecosystem, which are junit,
commons-io and jackson-databind.

As aforementioned, we collect on average 75 downstream
projects for each vulnerable upstream project. We then in-
vestigate the percentage of the downstream projects that are
reachable to the vulnerable methods, and Fig. 4a shows the
results. For those vulnerable upstream projects that are actually
used by its downstreams (i.e., the downstream invokes at
least one API in the upstream), we find that on average, a
vulnerable upstream affects 10.4% of its downstream projects.
For 28 different upstreams (e.g., httpclient:4.3), over 80% of
the downstream projects can reach the vulnerable functions,
thus posing significant security threats to the ecosystem. We
also make an interesting observation that there are certain
commonly used APIs in the upstream that are reachable to
the vulnerable functions. Such APIs are usually the entry
points to the upstream (i.e., a constructor), once such APIs
are reachable to the vulnerable functions, downstream soft-
ware will be affected for a large proportion. Identifying such
APIs is significant since if we can take precautions to them
(e.g., adding sanitizers), the threats of upstream vulnerabilities
to downstream projects can be significantly mitigated.

Finding 2. Around 25% of the vulnerable upstream projects
can be reachable by the corresponding downstream projects.
A vulnerable upstream threats 10.4% of its downstream
projects, on average, in terms of reachability. There are
popular upstreams and commonly used APIs that lead sub-
stantial downstream projects to become vulnerable, which
deserves more attention to ensure ecosystem securities.

B. Downstream Projects

In this subsection, we aim to understand the extent to
which downstream projects are threatened by the upstream
vulnerabilities. In particular, we analyze from two perspective:
risky invocation/ function and downstream threatened ratio.
Risky Invocation and Function. Downstream projects be-
come vulnerable through risky invocations (as defined in Sec-
tion III-B). We identify 49,766,554 unique invocations made
by the downstream projects to upstream libraries in our dataset
in total. It turns out that 4.7% of such invocations are risky
that expose the downstream software to danger. In particular,
a downstream might contain multiple risky functions, and
Fig. 4b shows the distribution. In particular, 1,265 different

downstream projects contain at least two risky functions, and
136 contain over 10 risky functions.
Threatened Ratio. To further understand the potential threats
of upstream vulnerabilities to downstream projects, we analyze
the threatened ratio for each downstream. The threatened ratio
measures the proportion of the functions in the downstream
that are reachable to any risky functions (including risky
functions themselves) over the total number of functions in
the downstream. A higher threatened ratio indicates a larger
proportion of the downstream functions will be potentially
threatened by vulnerabilities. Fig. 4c shows the distributions,
and we can see that for most of the downstream projects
(i.e., 88.1%), the threatened ratio is less than 10.0%. For a
small proportion of downstream (i.e., 0.5%), the threatened
ratio is over 50%, indicating that over half of the functions in
the downstream are reachable to upstream vulnerabilities.

Finding 3. Around 5% of the invocations from the down-
stream to upstream are risky. As for the threatened ratio of
downstream, 88.1% is less than 10%, which means for most
of the downstream, only less than 10% of its functions are
reachable to the upstream vulnerabilities.

V. RQ2: REACHABLE CONSTRAINTS AND CONTEXTS

As illustrated in Section III-B2, in this RQ, we explore from
following three aspects: reachable path ratio, the characteris-
tics of path constraints and risky invocations’ contexts.

A. Reachable ICFG Path Ratio

In Fig. 5a, we show the length distribution of all the
reachable CG paths, and we can see that the maximum length
is 23, indicating the downstream needs to pass through 23
different functions to reach the vulnerable functions. The
length of 42.7% of such reachable CG paths is less than
5, and that ratio is 91.2% for the length of 10. However,
there might exist many constraints along a reachable CG path
if we consider the control-flow in each function. Therefore,
we construct the inter-procedure control flow graph (ICFG)
between the downstream and upstream, and then measure the
reachable ICFG path ratio as introduced in Section III-B2.

Fig. 5b shows the results. We can find that for 25.3% of
the reachable CG paths, the reachable ICFG path ratio is
1, which means all the paths in the call path can reach the
vulnerable function. Besides, for 32.7% of the reachable CG
paths, the ratio is over 50%, indicating that among all the
ICFG paths along the CG path, half of them can eventually
reach the vulnerable functions. In addition, for around 29.7%,
the reachable ICFG path ratio is extremely low (i.e., <0.01),
indicating a limited degree of security threats.

B. Path Constraints

We first investigate the distribution towards the number
of constraints along each reachable CG path, and Fig. 5a
shows the results. We can see that for 17.6% of the reachable
CG path, the number of constraints is 0, indicating that the
vulnerable functions can be directly accessed. For 29.5% of



(a) Affected ratio v.s. Upstream ratio (b) The number of risky function (c) Threatened ratio/Downstream ratio
Fig. 4: The distribution of reachable ratio and the number of risky function

(a) Constrain/Path length (b) Cumulative reachable ratio
Fig. 5: Path reachable ratio and path length

the CG paths, the number of constraints is more than 10, which
indicates that for such cases, at least 10 different constraints
are required to be resolved in order to reach the vulnerable
functions. Such a ratio is 8.0% for the length of 20.

Finding 4. The length of 42.7% of the reachable CG paths
is less than 5. For around 30% of such paths, at least 10
constraints should be resolved to reach vulnerable functions.

We then investigate the characteristics of such constraints, in
particular, from the perspectives of the variable and operator
involved. Table. I shows the statistical results. With respect to
the operators, since we analyze at the Soot IR code [33], which
is a typical form of three-address code, all the operators of
condition expressions can be classified into the six categories.
In particular, the unequal (46.7%) and the equal mark (46.0%)
take the majority proportion. The equal mark is the hardest to
be satisfied in practice, which will often lead the path to be in-
feasible [44]. With respect to the variable type, we can observe
that variables of the primitive types (e.g., int, float, double)
take the largest proportion (60.5%). Reference type of String
and Array collectively take the proportion of 3.3% while the
rest of the reference types (e.g., self-defined classes) take the
proportion of 36.2%. We are also interested in where the values

<NG,R,P>
<G,R,P>

<NG,NR,P>
<NG,R,NP>

<G,NR,P>
<G,R,NP>

<G,NR,NP>
<NG,NR,NP>

10 3

10 2

10 1

Ra
tio

Fig. 6: Context distribution of risk invocations. G/NG denotes
guarded/not guarded; R/NR denotes returned/not returned;
P/NP denotes used as parameters/not used as parameters.

TABLE I: The distribution of constraint characteristics
Operator Variable Source Variable Type

Type Ratio Type Ratio Type Ratio
̸= 46.70% Invocation 55.10% Primitive type 60.50%
== 46.00% Filed 16.40% Other Reference Type 36.20%
≥ 2.30% Parameter 15.40% String 2.20%
> 2.10% Constant 13.10% Array 1.10%
< 1.90%
≤ 1.00%

of those variables in the constraints originate. Therefore, we
trace the def-use chains of those variables and summarize
four common sources: return value of invocation, parameters
of the functions, filed reference and constant defined in the
function. We find that the return value of invocation takes the
largest proportion (55.1%) while the other three take similar
proportions. Particularly, a non-negligible proportion (13.1%)
of the constraints involve constant values.

Finding 5. Variables of reference types and those originated
from invocations are often involved in path constraints.
Therefore, inter-procedure analysis is necessary when assess-
ing the security threats among upstream and downstream.

C. The Context of Ricky Invocations

As discussed in Section III-B2, we mainly investigate two
types of contextual information: (1) whether the risky invo-
cation is guarded; (2) whether the return value of the risky
invocation propagates (i.e., used as return or parameters for
other functions). Fig. 6 shows the distribution results. The
category exhibits the highest threat is ⟨NG,R, P ⟩ (i.e., not
guarded but used as both return value and parameters), which
accounts for 0.04% of the cases. Besides, 27.1% of the risky
invocations can propagate return value ⟨G/NG,R, P ⟩, which
may induce further threats to the downstream software. Even
worse, among these risk invocations, 12.5% can access the
vulnerable function without any constraints.

Finding 6. Around half of the risky invocations are not
guarded by any checkers, and the return value of nearly 30%
of the risky invocations will propagate.

VI. RQ3:DOWNSTREAM RESPONSE

In this Section, we aim to understand how downstream
projects and developers respond to upstream vulnerabilities.

A. Downstream Response Ratio and Speed

Overview Distribution. We first aim to obtain the overview
picture of how downstream projects are affected by upstream



2008 2010 2012 2014 2016 2018 2020 2022

switcher-client

expense-tally-model

CVE published
Affected
Not affected

Fig. 7: Two affected downstream of CVE-2021-44832

2008 2010 2012 2014 2016 2018 2020 2022
Timeline (year)

1K

2K

3K

CV
E-

Do
wn

st
re

am
 P

ai
r I

nd
ex CVE published

Affected
Not affected

Fig. 8: Upstream vulnerability threats to downstreams, sorted
by the CVE release time as indexed by the black line.

vulnerabilities and how they respond during software evolu-
tion. For each triplet, we extract the upstream’s version as
specified in the downstream’s configuration to see if it is
affected by the specific CVE. We then track the specified
version in the downstream to see if they change during
software evolution. Fig. 7 shows two affected downstream,
switcher-client and expense-tally-model, of an up-
stream log4j-core, which is affected by CVE-2021-44832.
These two projects depend on the vulnerable version of
log4j-core and became affected starting from 2020.03.09
and 2020.09.13 respectively. The vulnerability was discovered
and a CVE was indexed on 2021.12.28. Until the discov-
ery of the vulnerability, the two downstream have utilized
this vulnerable upstream for 659 and 471 days. Upon the
discovery of the CVE, switcher-client has upgraded the
version of log4j-core to an unaffected version as shown
in Fig. 7 in 12 days, thus getting rid of the vulnerability
issue. Similar action has also been taken by the downstream
expense-tally-model while it takes 153 days.

We make the above analysis for all the collected instances
to obtain an overview picture towards how the downstream
projects are affected by existing vulnerabilities currently in
the ecosystem, and Fig. 8 shows the results. In particular,
we choose the time from 2008.01.01 to 2022.08.17 since
the earliest CVE in our dataset was published in 2008. Each
horizontal line presents a CVE-Downstream pair. The yellow
color denotes that at the specific time, the downstream projects
depend on a version of the upstream that is vulnerable. The
darker the color, the more number of downstream projects are
being affeted by CVEs. The black line in the figure indicates
the expose time of the CVE. Fig. 8 shows that downstream
projects are often affected by upstream vulnerabilities for quite
a long time before the corresponding CVE was exposed (on
average 986 days). Upon the release of the CVE, a large
proportion (i.e., 86.0%) of the downstream projects have taken
action, and the average time taken is 270 days. Unfortunately,
we also observe no responses to the upstream vulnerabilities

All Direct
Transitive

Reachable
Unreachable

0.2
0

0.2
0.4
0.6
0.8

Re
sp

on
se

 R
at

io

Upgrade
Downgrade

Remove
No response

(a) Response distribution of dif-
ferent reachable condition

0.0 0.2 0.4 0.6 0.8 1.0
0

500
1000
1500
2000
2500
3000
3500

Re
sp

on
se

 T
im

e 
(d

ay
s) All

Direct Invocation
Transitive Invocation
Unreachable

(b) Interval between CVE pub-
lished time and response time.

Fig. 9: Response ratio and response speed

for the rest of the downstream projects until 2022.08.17. Be
noted that several thick red bars appear in Fig. 8. This is
because, for each CVE, we have clustered its downstream
together, while each horizontal line is originally yellow and
the cluster becomes a thicker red bar when the affected yellow
lines are stacked together.

Finding 7. Before the discovery of the CVE, downstream
projects have utilized the vulnerable upstream for 986 days
on average. Upon the CVE’s release, 86.0% of the down-
stream projects have taken actions such as upgrading. The
response speed varies with an average period of 270 days.

We then investigate the distributions of the response ratio
and speed in detail in terms of their reachability as follows.
Response Ratio. We show the response ratio together with
various reachable conditions in Fig. 9a. The results also show
that for those downstream that can directly reach the vulnera-
ble functions, the response ratio is the highest (i.e., 94.2%). In
particular, 87.4% of the downstream projects have upgraded
the version of the vulnerable upstream, and 6.8% of the
downstream projects have removed the vulnerable upstream.
It falls into our intuition since such cases exhibit the highest
security threats. However, we do not observe an obvious
difference between reachable cases in total and unreachable
ones in terms of response ratio.
Response Speed. We further investigate the speed of the
response taken by developers. In particular, we measure the
interval (i.e., in days) between the CVE published time and
response commit submitted time. Fig. 9b shows the statistical
results that the response speed for those reachable cases is
much faster than that of unreachable ones. In particular, for
80% of the cases, downstream with direct invocations take
action within 161 days while such a number is 524 for un-
reachable cases. For 90% of the cases, downstream with direct
invocations take action within 217 days while the number is
506 for transitive invocations and 890 for unreachable cases.

Finding 8. Despite the fact that the intuition behind the
action taken by developers is complex, downstream projects
with direct or transitive access to upstream vulnerable func-
tions are more likely to take action in a quicker way.

B. Developer Survey

Among all the survey responses, we observe that 81.7%
of them have over ten years of programming experience. As



10 0 10 20 30 40 50 60

No Response

Response

7

2

44

29

13

16

aware (by sca) aware (by others) not aware

(a) Awareness of CVE

 18 9 4 not maintained
not affected
others

0 10 20 30 40 50
 30 10 8 21

security issue
normal upgrade

get rid of warning
compatibility issues

others

(b) Reasons for responses

 13 1

0 5 10 15 20 25 30 35 40

 30 5 3 3

manual analysis
static analysis tools

dynamic testing tools
reported by the community

(c) How the threats were assessed
Fig. 10: The major results of our user study

shown in Fig. 10a, we observe that most (72.2%) developers
are aware of the target CVE. Specifically, such a ratio is higher
for those cases with responses (79.7%) than those without
(68.9%). At the same time, we find that 73 (89.0%) of all
aware developers notice the CVE due to SCA tools. The high
ratio indicates that SCA tools are widely used in the ecosystem
and are also playing a significant role in prompting developers
to be aware of vulnerable dependencies.

For developers who make no responses but are aware of the
CVE, Fig. 10b shows the behind reasons. The results reveal
that for over half the cases (18/31), the software is no longer
maintained. However, such abandoned libraries widely exist
in the ecosystem and can be further used by other libraries,
thus posing significant security threats to the ecosystem.
Another main proportion (9/31) of the developers find that the
project is actually not affected by the upstream vulnerabilities,
thus taking no action. For those projects where we observe
responses to the CVE and the developers are also aware of
the security issue, the behind reason also varies as shown in
Fig. 10b. Only around 58.8% (30/51) of the responses are
made to mitigate the threats of upstream vulnerabilities, which
indicates for certain cases, the upstream vulnerability may not
affect the project or the developers think the vulnerabilities are
insignificant to be repaired. In particular, 10 (19.6%) responses
are made due to simple regular upgrades (e.g., upgrading the
dependency for new features but accidentally eliminate the
security threats). Eight (15.7%) responses are made to simply
get rid of the warnings from automated tools such as OWASP
DC [8] and Snyk [9], among which only one developer
verifies that his software is indeed affected by the upstream
vulnerability, indicating the high false positives of SCA tools.
Other two (3.9%) responses are made for compatibility issues.

For those developers who claim that they are aware towards
the threats of upstream vulnerabilities, we further investigate
how they identify and assess such threats. As Fig. 10c shows,
most of the developers (51.8%) manually inspect whether the
vulnerability would threaten their software via manual analysis
based on domain knowledge. A small percentage (17.9%) of
them analyze through dynamic or static analysis tools. Such
results indicate the lack of precise automated tools to help
assess the threats of security issues among the ecosystem.

In addition, we attach a comment section at the end of
the survey to allow developers to raise any opinions about
the upstream CVE and ecosystem security in general. Several
developers give positive comments towards SCA tools and
think they are critical to resolving security issues. However,
another two developers think the compatibility issues cost
much more than the security issue. If developers rely on SCA

tools to determine if an upgrade is necessary, they may need
to invest a lot of effort to resolve the collateral compatibility
issues. In particular, they comment “this particular upgrade
breaks backward compatibility in bad ways, and thus the
cost is too high.”, which reveals that more accurate metrics
for assessing potential security threats are much needed. One
developer also shows interest in our research by commenting
“I’d love to know the results of your research”.

Finding 9. Most of the downstream developers (67.0%) are
aware of upstream vulnerabilities thanks to the wide adop-
tion of SCA tools. Downstream projects do not take responses
to upstream vulnerabilities since the projects are not affected
or not maintained. Upstream vulnerability threats could be
incidentally mitigated due to other non-security reasons,
such as normal upgrade and addressing compatibility issues.

VII. RELATED WORK

Security Issues of Third-party Libraries. Many works have
performed comprehensive studies aiming to understand the
security issues in various ecosystems (e.g. JavaScript, Python,
and Ruby) [45], [46], [47], [48], [49], [50]. They target
the whole ecosystem or the supply chain and investigate
several kinds of security issues. Several studies [51], [52],
[53] perform studies on the usage and effectiveness of SCA
tools in actual production to resolve vulnerable dependencies.
Derr et al. [54] perform the first study concerning outdated
dependencies and the security issues in Android. Cox et
al. [55] propose several metrics to measure the outdatedness
of dependencies. Ma et al. [39] collect cross-project correlated
bugs and design a survey to study the response of developers
for Scientific libraries in the Python ecosystem. Kula et
al. [38] investigate to what extent do developers update their
dependencies and how they respond to vulnerability advisories
in the Java ecosystem. They find that 81.5% of the selected
systems still keep outdated dependencies and do not respond
to the vulnerability. Wang et al. [56] conduct an analysis on
806 open-source projects and 544 security bugs to study the
usage and the update of dependencies and analyze security
issues in the third-party library. Different to the above studies,
we perform cross-project analysis to understand the upstream
vulnerabilities with a specific focus on the Maven ecosystem in
this study. Besides, our analysis performs at a finer granularity
not only including the analysis towards CG but also including
the ICFG with the associated path constraints.
Reachability of Cross-project Vulnerabilities. Recent stud-
ies propose to consider the reachability of the corresponding
vulnerable function to advance existing tools. In particular,



Ma et al. [57] leverage symbolic execution on the downstream
to verify the reachability of the functions with general bugs
in the upstream. However, they target general bugs instead
of vulnerabilities, and focus on the scientific libraries in the
Python ecosystem. They claim that they have extracted the
conditions from the bug reports, which is probably infeasible
for vulnerabilities to get from CVE description. Serena et al.
conduct several studies [58], [32], [59] on the reachability
of upstream vulnerabilities. In addition, they combine static
analysis and dynamic execution of test suites to estimate the
reachability of CVEs in the Java ecosystem [27]. However,
the tool it provides (Steady) only considers the reachability
from call graph using static analysis. They also try to improve
Evosuite to dynamically estimate the reachability of upstream
vulnerable functions [60]. Unfortunately, the tool is only
experimented on crafted examples, and the practical usefulness
is compromised. Besides reachability, our study also considers
the callsites’ context and the constraints along the reachable
ICFG path to understand the threats.

VIII. DISCUSSION

A. Implication

Our empirical findings can help improve SCA tools and pro-
vide insights for future researches concerning vulnerabilities
in ecosystems. The following lists some major implications:
For Downstream Developers. Existing SCA tools are im-
precise and will generate many false positives. As Finding 1
reveals, the majority of upstream vulnerable functions are actu-
ally not reachable by the corresponding downstream projects.
However, existing SCA tools will still generate alerts for
such instances, thus leading to false positives. Therefore, it is
recommended for downstream developers to perform further
analysis (e.g., reachability analysis) to assess the threats of
those vulnerabilities before taking actions such as upgrading.
For Upstream Developers. It is hard to precisely assess
an vulnerability’s threats to other projects without knowing
the vulnerable code and the corresponding patch. Therefore,
it would be beneficial if the upstream developers can well
manage and track the contained vulnerabilities, and provide
detailed information for downstream (e.g., the vulnerable func-
tions and triggering conditions), thus facilitating SCA tools
in performing more precise analysis. Besides, as revealed by
Finding 2, there are plenty of popular and commonly used
APIs that often lead downstream projects to the upstream
vulnerable functions. As a result, upstream developers should
also pay more attention to such APIs (e.g., adding more
rigorous checkers), so that the security threats to downstream
projects and the whole ecosystem can be potentially mitigated.
For Future Researchers. A precise model that can assess
the threats of upstream vulnerabilities is much desired. Even
an upstream vulnerability is reachable, downstream developers
may still choose not to take actions due to the high costs
of upgrading or the limited threats of the vulnerabilities
(RQ3). Therefore, a model that can precisely assess the
vulnerability’s risks, as well as the collateral costs of version
upgrades, is much desired. Unfortunately, existing works [47],

[48], [49], [55] that perform coarse-grained analysis at the
package level cannot achieve such a goal while our findings
in RQ2 can provide useful guidance to construct such a
model (e.g., leveraging the features of constraints along a
vulnerability’s propagation paths to assess the risks).

B. Threats To validity

CG Construction. During CG construction, we did not in-
clude calls through reflection and dynamic proxies following
previous works [35], [48] since the analysis is not scalable
while our investigation is large-scale. Such cases are hard to
be avoided, but fortunately, they occur rarely in practice [61].
Therefore the threats to our study is limited considering the
analysis scale.
Data Collection. Although we have collected a large number
of CVEs with patches as well as upstream and downstream
projects, we are unable to cover all the CVEs in Maven,
mainly because the patches corresponding to the CVEs are
often inaccessible. However, we have collected as much data as
possible from different sources. We have also manually refined
the collected data (e.g., vulnerable version ranges and the patch
commits) to ensure the quality of our analyzed dataset.
Ethical Considerations. To avoid spamming the open-source
community, we only select active developers and recent year
CVEs, and all emails are sent by the accredited organization
email address with clear information about the vulnerabil-
ity and the developer’s response to it. The developers have
responded positively to our user surveys and also showed
interests to our researches.

IX. CONCLUSION

In this study, we conduct a large-scale empirical investi-
gation to comprehensively understand the threats of upstream
vulnerabilities to downstream projects in the Maven ecosys-
tem. Specifically, we analyzed 832 CVEs with 1,078 patches
corresponding to 613 different upstream projects in the Maven
ecosystem, which covers around 50 million of invocations
from downstream projects to upstream libraries, what’s more,
we further conduct a user study with over 100 downstream
developers. Our analysis is performed from multiple aspects
and eventually, we distilled multiple interesting yet signifi-
cant findings characterizing the potential security threats of
upstream vulnerabilities. Such findings can not only benefit
developers to understand the security threats in the Maven
ecosystem, but also can guide future research in the field.

X. ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their constructive
comments. This work is supported by the Key Program
of National Science Foundation of China under Grant No.
U1936211.

REFERENCES

[1] M. Pittenger, “Open source security analysis: The state of open source
security in commercial applications,” Black Duck Software, Tech. Rep,
2016.

[2] Apache, The Maven Repository, Aug. 2022, https://mvnrepository.com/
repos/central.



[3] Snyk, “The state of open source security,” https://snyk.io/stateofossec
urity/pdf/The%20State%20of%20Open%20Source.pdf, 2022, accessed:
2022-7.

[4] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu,
“ATVHUNTER: reliable version detection of third-party libraries for
vulnerability identification in android applications,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 2021, pp. 1695–1707. [Online].
Available: https://doi.org/10.1109/ICSE43902.2021.00150

[5] Apache, “Apache log4j2,” https://github.com/apache/logging-log4j2,
2022, accessed: 2022-7.

[6] Google, “Understanding the impact of apache log4j vulnerabil-
ity,” https://security.googleblog.com/2021/12/understanding-impact-of-
apache-log4j.html, 2022, accessed: 2022-7.

[7] OWASP, “Top 10 web application security risks,” https://owasp.org/ww
w-project-top-ten/, 2022, accessed: 2022-7.

[8] D. Check, https://owasp.org/www-project-dependency-check/, 2022, ac-
cessed: 2022-7.

[9] Snyk, https://snyk.io, 2022, accessed: 2022-7.
[10] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto,

and A. Ihara, “Towards smoother library migrations: A look at
vulnerable dependency migrations at function level for npm javascript
packages,” in ICSME 2018, Madrid, Spain, September 23-29, 2018.
IEEE Computer Society, 2018, pp. 559–563. [Online]. Available:
https://doi.org/10.1109/ICSME.2018.00067

[11] L. Xavier, A. Brito, A. C. Hora, and M. T. Valente, “Historical
and impact analysis of API breaking changes: A large-scale
study,” in IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2017, Klagenfurt, Austria,
February 20-24, 2017, M. Pinzger, G. Bavota, and A. Marcus, Eds.
IEEE Computer Society, 2017, pp. 138–147. [Online]. Available:
https://doi.org/10.1109/SANER.2017.7884616

[12] K. Huang, B. Chen, L. Pan, S. Wu, and X. Peng, “REPFINDER:
finding replacements for missing apis in library update,” in ASE
2021, Melbourne, Australia, November 15-19, 2021. IEEE, 2021, pp.
266–278. [Online]. Available: https://doi.org/10.1109/ASE51524.2021.
9678905

[13] W. Liu, B. Chen, X. Peng, Q. Sun, and W. Zhao, “Identifying change
patterns of API misuses from code changes,” Sci. China Inf. Sci.,
vol. 64, no. 3, 2021. [Online]. Available: https://doi.org/10.1007/s114
32-019-2745-5

[14] Y. Wang, M. Wen, R. Wu, Z. Liu, S. H. Tan, Z. Zhu, H. Yu, and S.-C.
Cheung, “Could i have a stack trace to examine the dependency conflict
issue?” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 572–583.

[15] GitHub, Top Programming Language, Aug. 2022, https://githut.info.
[16] Dependabot, https://github.com/dependabot, 2022, accessed: 2022-7.
[17] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,

and S. Cheung, “Do the dependency conflicts in my project matter?” in
ESEC/SIGSOFT, Lake Buena Vista, FL, USA, November 04-09, 2018,
G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds. ACM, 2018, pp.
319–330. [Online]. Available: https://doi.org/10.1145/3236024.3236056

[18] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S. Cheung,
C. Xu, and Z. Zhu, “Watchman: monitoring dependency conflicts for
python library ecosystem,” in ICSE ’20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 125–135. [Online].
Available: https://doi.org/10.1145/3377811.3380426

[19] Y. Wang, R. Wu, C. Wang, M. Wen, Y. Liu, S.-C. Cheung, H. Yu, C. Xu,
and Z. Zhu, “Will dependency conflicts affect my program’s semantics?”
IEEE Transactions on Software Engineering, vol. 48, no. 7, pp. 2295–
2316, 2022.

[20] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An
empirical study into evolution problems in java programs caused
by library upgrades,” in 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February 3-6,
2014, S. Demeyer, D. W. Binkley, and F. Ricca, Eds. IEEE
Computer Society, 2014, pp. 64–73. [Online]. Available: https:
//doi.org/10.1109/CSMR-WCRE.2014.6747226

[21] H. Huang, M. Wen, L. Wei, Y. Liu, and S.-C. Cheung, “Characterizing
and detecting configuration compatibility issues in android apps,”
in Proceedings of the 36th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’21. IEEE Press, 2022, p.

517–528. [Online]. Available: https://doi.org/10.1109/ASE51524.2021.
9678556

[22] C. Xu, B. Chen, C. Lu, K. Huang, X. Peng, and Y. Liu, “TRACER:
finding patches for open source software vulnerabilities,” CoRR, vol.
abs/2112.02240, 2021. [Online]. Available: https://arxiv.org/abs/2112.0
2240

[23] G. Nikitopoulos, K. Dritsa, P. Louridas, and D. Mitropoulos, “Crossvul:
a cross-language vulnerability dataset with commit data,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, D. Spinellis, G. Gousios, M. Chechik, and
M. D. Penta, Eds. ACM, 2021, pp. 1565–1569. [Online]. Available:
https://doi.org/10.1145/3468264.3473122

[24] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in Proceedings of the 16th International Conference
on Mining Software Repositories, MSR 2019, 26-27 May 2019,
Montreal, Canada, M. D. Storey, B. Adams, and S. Haiduc,
Eds. IEEE / ACM, 2019, pp. 383–387. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00064

[25] T. H. M. Le and M. A. Babar, “On the use of fine-grained vulnerable
code statements for software vulnerability assessment models,” in 19th
IEEE/ACM International Conference on Mining Software Repositories,
MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022. ACM, 2022, pp.
621–633. [Online]. Available: https://doi.org/10.1145/3524842.3528433

[26] T. V. V. Database, https://www.sourceclear.com/vulnerability-database,
2022, accessed: 2022-7.

[27] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source
software,” in 2018 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2018, Madrid, Spain, September
23-29, 2018. IEEE Computer Society, 2018, pp. 449–460. [Online].
Available: https://doi.org/10.1109/ICSME.2018.00054

[28] J. Dai, Y. Zhang, Z. Jiang, Y. Zhou, J. Chen, X. Xing, X. Zhang,
X. Tan, M. Yang, and Z. Yang, “Bscout: Direct whole patch presence
test for java executables,” in 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, S. Capkun and F. Roesner,
Eds. USENIX Association, 2020, pp. 1147–1164. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/dai

[29] Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. Wang, X. Zhang, X. Xing,
M. Yang, and Z. Yang, “Pdiff: Semantic-based patch presence
testing for downstream kernels,” in CCS ’20: 2020 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020, J. Ligatti, X. Ou, J. Katz, and
G. Vigna, Eds. ACM, 2020, pp. 1149–1163. [Online]. Available:
https://doi.org/10.1145/3372297.3417240

[30] B. Liu, G. Meng, W. Zou, Q. Gong, F. Li, M. Lin, D. Sun, W. Huo, and
C. Zhang, “A large-scale empirical study on vulnerability distribution
within projects and the lessons learned,” in ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 1547–1559.
[Online]. Available: https://doi.org/10.1145/3377811.3380923

[31] Aether, https://wiki.eclipse.org/Aether/What Is Aether, 2022, accessed:
2022-7.

[32] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4real: A methodology for counting actually vulnerable dependen-
cies,” IEEE Trans. Software Eng., vol. 48, no. 5, pp. 1592–1609, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2020.3025443

[33] R. Vallée-Rai, P. Lam, C. Verbrugge, P. Pominville, and F. Qian,
“Soot (poster session): a java bytecode optimization and annotation
framework,” in OOPSLA 2000, Minneapolis, MN, USA, October 15-19,
2000, J. Haungs, Ed. ACM, 2000, pp. 113–114. [Online]. Available:
https://doi.org/10.1145/367845.368008

[34] J. Lu, D. He, and J. Xue, “Eagle: Cfl-reachability-based precision-
preserving acceleration of object-sensitive pointer analysis with
partial context sensitivity,” ACM Trans. Softw. Eng. Methodol.,
vol. 30, no. 4, pp. 46:1–46:46, 2021. [Online]. Available: https:
//doi.org/10.1145/3450492

[35] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix,
T. F. Bissyandé, and J. Klein, “Jucify: A step towards android
code unification for enhanced static analysis,” in 44th IEEE/ACM
44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 1232–1244.
[Online]. Available: https://doi.org/10.1145/3510003.3512766



[36] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS 2008, San Diego, California, USA,
10th February - 13th February 2008. The Internet Society, 2008.
[Online]. Available: https://www.ndss-symposium.org/ndss2008/automa
ted-whitebox-fuzz-testing/

[37] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint:
fast and precise sparse value flow analysis for million lines of
code,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, J. S. Foster and
D. Grossman, Eds. ACM, 2018, pp. 693–706. [Online]. Available:
https://doi.org/10.1145/3192366.3192418

[38] R. G. Kula, D. M. Germán, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? - an empirical study
on the impact of security advisories on library migration,” Empir.
Softw. Eng., vol. 23, no. 1, pp. 384–417, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9521-5

[39] W. Ma, L. Chen, X. Zhang, Y. Zhou, and B. Xu, “How do
developers fix cross-project correlated bugs?: a case study on the
github scientific python ecosystem,” in Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017, S. Uchitel, A. Orso, and M. P.
Robillard, Eds. IEEE / ACM, 2017, pp. 381–392. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.42

[40] libraries.io, https://libraries.io/, 2022, accessed: 2022-7.
[41] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng, “Interactive,

effort-aware library version harmonization,” in ESEC/FSE, Virtual
Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and
T. Zimmermann, Eds. ACM, 2020, pp. 518–529. [Online]. Available:
https://doi.org/10.1145/3368089.3409689

[42] A. Brito, L. Xavier, A. C. Hora, and M. T. Valente, “Apidiff:
Detecting API breaking changes,” in SANER 2018, Campobasso, Italy,
March 20-23, 2018, R. Oliveto, M. D. Penta, and D. C. Shepherd,
Eds. IEEE Computer Society, 2018, pp. 507–511. [Online]. Available:
https://doi.org/10.1109/SANER.2018.8330249

[43] Apache, Top Projects of Maven Repository, Aug. 2022, https://mvnrep
ository.com/popular.

[44] Y. Song, X. Zhang, and Y.-Z. Gong, “Infeasible path detection based on
code pattern and backward symbolic execution,” Mathematical Problems
in Engineering, vol. 2020, 2020.

[45] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio,
and W. Lee, “Towards measuring supply chain attacks on package
managers for interpreted languages,” in 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society, 2021. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss-paper/towards-measuring-
supply-chain-attacks-on-package-managers-for-interpreted-languages/

[46] K. Huang, B. Chen, C. Xu, Y. Wang, B. Shi, X. Peng, Y. Wu,
and Y. Liu, “Characterizing usages, updates and risks of third-party
libraries in java projects,” Empir. Softw. Eng., vol. 27, no. 4, p. 90,
2022. [Online]. Available: https://doi.org/10.1007/s10664-022-10131-8

[47] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison
of dependency network evolution in seven software packaging
ecosystems,” Empir. Softw. Eng., vol. 24, no. 1, pp. 381–416, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-017-9589-y

[48] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying
the vulnerability propagation and its evolution via dependency trees
in the NPM ecosystem,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 672–684. [Online]. Available:
https://doi.org/10.1145/3510003.3510142

[49] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,”
in 28th USENIX Security Symposium, USENIX Security 2019, Santa
Clara, CA, USA, August 14-16, 2019, N. Heninger and P. Traynor, Eds.
USENIX Association, 2019, pp. 995–1010. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/zimmerman

[50] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of
security vulnerabilities in python packages,” in 28th IEEE International

Conference on Software Analysis, Evolution and Reengineering, SANER
2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 2021, pp. 446–457.
[Online]. Available: https://doi.org/10.1109/SANER50967.2021.00048

[51] S. Mirhosseini and C. Parnin, “Can automated pull requests
encourage software developers to upgrade out-of-date dependencies?”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, G. Rosu, M. D. Penta, and T. N. Nguyen,
Eds. IEEE Computer Society, 2017, pp. 84–94. [Online]. Available:
https://doi.org/10.1109/ASE.2017.8115621

[52] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, J. Ligatti, X. Ou,
J. Katz, and G. Vigna, Eds. ACM, 2020, pp. 1513–1531. [Online].
Available: https://doi.org/10.1145/3372297.3417232

[53] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati, “On
the use of dependabot security pull requests,” in 18th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2021,
Madrid, Spain, May 17-19, 2021. IEEE, 2021, pp. 254–265. [Online].
Available: https://doi.org/10.1109/MSR52588.2021.00037

[54] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, B. Thuraisingham, D. Evans, T. Malkin,
and D. Xu, Eds. ACM, 2017, pp. 2187–2200. [Online]. Available:
https://doi.org/10.1145/3133956.3134059

[55] J. Cox, E. Bouwers, M. C. J. D. van Eekelen, and J. Visser,
“Measuring dependency freshness in software systems,” in 37th
IEEE/ACM International Conference on Software Engineering, ICSE
2015, Florence, Italy, May 16-24, 2015, Volume 2, A. Bertolino,
G. Canfora, and S. G. Elbaum, Eds. IEEE Computer Society, 2015, pp.
109–118. [Online]. Available: https://doi.org/10.1109/ICSE.2015.140

[56] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu,
and Y. Liu, “An empirical study of usages, updates and risks of
third-party libraries in java projects,” in IEEE International Conference
on Software Maintenance and Evolution, ICSME 2020, Adelaide,
Australia, September 28 - October 2, 2020. IEEE, 2020, pp. 35–45.
[Online]. Available: https://doi.org/10.1109/ICSME46990.2020.00014

[57] W. Ma, L. Chen, X. Zhang, Y. Feng, Z. Xu, Z. Chen, Y. Zhou,
and B. Xu, “Impact analysis of cross-project bugs on software
ecosystems,” in ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel
and D. Bae, Eds. ACM, 2020, pp. 100–111. [Online]. Available:
https://doi.org/10.1145/3377811.3380442

[58] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for
vulnerabilities in open-source software libraries,” in 2015 IEEE
International Conference on Software Maintenance and Evolution,
ICSME 2015, Bremen, Germany, September 29 - October 1,
2015, R. Koschke, J. Krinke, and M. P. Robillard, Eds. IEEE
Computer Society, 2015, pp. 411–420. [Online]. Available: https:
//doi.org/10.1109/ICSM.2015.7332492

[59] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2018, Oulu,
Finland, October 11-12, 2018, M. Oivo, D. M. Fernández, and
A. Mockus, Eds. ACM, 2018, pp. 42:1–42:10. [Online]. Available:
https://doi.org/10.1145/3239235.3268920

[60] E. Iannone, D. D. Nucci, A. Sabetta, and A. D. Lucia, “Toward
automated exploit generation for known vulnerabilities in open-
source libraries,” in 29th IEEE/ACM International Conference on
Program Comprehension, ICPC 2021, Madrid, Spain, May 20-
21, 2021. IEEE, 2021, pp. 396–400. [Online]. Available: https:
//doi.org/10.1109/ICPC52881.2021.00046

[61] K. Ali, X. Lai, Z. Luo, O. Lhoták, J. Dolby, and F. Tip, “A study of call
graph construction for jvm-hosted languages,” IEEE Trans. Software
Eng., vol. 47, no. 12, pp. 2644–2666, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2956925


