Fact-Aligned and Template-Constrained Static
Analyzer Rule Enhancement with LLMs

Zongze Jiang*t*, Ming Wen*1*ll, Ge Wen?, Hai Jin*1

*National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab

THubei Engineering Research Center on Big Data Security, Hubei Key Laboratory of Distributed System Security

tSchool of Cyber Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China

YCluster and Grid Computing Lab, School of Computer Science and Technology, HUST, Wuhan, 430074, China
Email: {jiangzongze, mwenaa, gwen, hjin} @hust.edu.cn

Abstract—Static analyzers are vital to ensure software quality,
but often produce false alarms. In this paper, we focus on
the challenging task, directly refining defective static detection
rules in the analyzer with Large Language Models to mitigate
false positives/negatives fundamentally. This paper introduces
RULEREFINER, a novel multi-stage framework for static ana-
lyzer rule refinement. Specifically, RULEREFINER systematically
employs LLMs by integrating dynamic profiling information
for fact-based rule-code alignment, performing differential fault
localization to accurately pinpoint error sources, and utilizing tar-
geted templates to guide and constrain LLM-based modifications
for precise and minimally disruptive enhancements. Evaluated
on 218 real-world refinement tasks, RULEREFINER achieved a
pass@5 score of 80.28 %, significantly outperforming all selected
LLM-based baselines under the same settings. Moreover, the
rules refined by RULEREFINER demonstrated high generalization
capability comparable to those written by human experts.

Index Terms—rule-based static analysis, software fault local-
ization, software refinement

I. INTRODUCTION

Maintaining high code quality is fundamental to ensur-
ing the reliability, security, and long-term maintainability
of software systems. Static analysis tools have emerged as
indispensable components of modern development workflows,
providing automated mechanisms for detecting code defects,
security vulnerabilities, and violations of coding standards
or specifications. By enabling early detection of such issues
during the development lifecycle, these tools significantly
reduce the cost and complexity of downstream debugging
and maintenance efforts [1]-[10]. Prominent examples include
SonarQube [11], ErrorProne [12], and Infer [13]. These tools
not only facilitate continuous quality assurance but also sup-
port the development of robust and secure software at scale.

In addition to these off-the-shelf tools, several widely
adopted static analysis frameworks now provide user-friendly
interfaces that enable developers and maintainers to define
custom detection rules tailored to their specific application
domains such as Semgrep [14], CodeQL [15] and PMD [16].
These frameworks significantly enhance the adaptability of
static analysis and the detection of project-specific coding

I Corresponding author. Ming Wen is also affiliated with Wuhan JinYinHu
Laboratory.

1 // Java Code with OSCI problems.
2 public class Test {
3 public void badl (String userData) {

4 ProcessBuilder pb = new ProcessBuilder();

5 pb.command ("sh", "/c", userData);

6 }

7 public void bad2 (ProcessBuilder builder,
CustomClass userData) {

8 String input = userData;

9 builder.command ("bash", input);

10 }

11 public void bad_fn(String userData) {

12 ProcessBuilder pb = new ProcessBuilder();

13 String cmd = trim(userData);

14 String shell = "sh"

15 String arg = "/c"

16 pb.command (shell, arg, cmd);

17 }

18 }

19 # Semgrep rule pattern for OSCI problem
20 patterns:

21 - pattern-inside: |

22 SFUNCDECL (..., SUSER_DATA, ...){...}
23 - pattern-either:

24 - pattern: |

25 $PB.command (..., SUSER_DATA, ...)
26 - patterns:

27 + - pattern-either:

28 - pattern-inside: |

29 $X = SUSER_DATA;

30 + - pattern-inside: |

31 + $X = trim (SUSER_DATA) ;

32 - pattern: $PB.command (..., $X, ...);

Fig. 1: A simplified Semgrep detection rule (L19-L32) to detect
OSCI bugs and three Java defective code examples (L1-L1g)

issues and security vulnerabilities. Fig. 1 presents a simplified
Semgrep rule aimed at identifying operating system command
injection (OSCI) vulnerabilities in Java code, demonstrating
the practical utility of such static analysis frameworks.
Despite their practical utility, static detection rules are
inherently imperfect [17]-[22]. In practice, when developers
design such rules, they typically begin by examining the com-
mon syntactic and semantic characteristics of known buggy
code examples [23]. These observations are then abstracted

into generalized and approximate rules intended to capture
similar patterns of potential vulnerabilities or defects in unseen
code. However, due to the inherent complexity of software
systems and the expressive richness of programming language
grammars, it is infeasible to account for all possible variations
and corner cases. As a result, static analysis tools will often
generate plenty of false positives or negatives in real-world
applications [17]-[19], [24].

Over recent years, many techniques have been developed
to mitigate false alarms for static analyzers [25]-[30]. For
example, BayeSmith [31] filters and prioritizes alarms by a
learning-based approach. FuzzSlice [32] generates and fuzzes
function-level code slices to prune false positives. More re-
cently, Large Language Models (LLMs) have demonstrated
promising perforamnce in various software engineering tasks
leveraging their strong code comprehension capabilities [33]-
[38]. Therefore, it has also been leveraged to refine static
analysis outputs by re-evaluating warnings to discern true
positives [39], [40]. However, these post-processing strategies
do not address the fundamental issue of generating false
negatives [41] and can further incur significant costs due to
repeated LLM invocations for each violation as reported by the
analyzer. In this paper, we focus on directly refining existing
static detection rules to mitigate false positives or negatives
Jundamentally, rather than performing post-mortem analysis
to filter false positives.

Technical Challenges. However, refining detection rules to
fix known false positives/negatives (i.e., denoted as defect-
revealing cases in this study) is non-trivial. LLMs, even
equipped with advanced prompt strategies such as few-shot
and chain-of-thoughts, still perform poorly.

Challenge 1: Static detection rules are typically expressed
in formats distinct from the target code, posing a semantic
gap that is challenging for LLMs to bridge. Static analysis
engines are often complex, featuring custom rule grammars,
intermediate representations, and unpredictable optimizations,
making it difficult for LLMs to align detection rules with
target code snippets. For example, Fig. 1 shows a rule from
Semgrep and several target code snippets. Despite the distinct
representations, the pattern at Lso actually matches all three
code snippets. However, lacking domain knowledge of ana-
lyzer engine implementations, LLMs often struggle to bridge
the semantic gap between detection rules and the target code.

Challenge 2: A static detection rule is often complex,
capturing multiple variants of similar issues, making it non-
trivial to localize the root cause for a given false positive
or negative. Violation cases associated with a given rule
can exhibit significant variability. While there are common
code features shared across all variants, each variant may
also possess relatively specific characteristics. For example,
in Fig. 1, the pattern observed at line Loo is shared across
all three code snippets, whereas the patterns at lines Log
and L3; are more specific to individual cases. The presence
of diverse code variants often necessitates the creation of
complex detection rules, in which multiple intertwined logic
components are embedded within a single rule. As a result,

when such a rule yields a false positive or false negative in
a real-world code example, the entangled nature of the logic
significantly hinders LLMs from accurate root cause analysis.

Challenge 3: LLMs struggle to refine static detection rules
without disrupting their carefully designed logic or introducing
new false positives and negatives. If not properly constrained,
LLMs may compromise the carefully designed logic of orig-
inal detection rules, inadvertently impairing their ability to
correctly identify true positives or filter out true negatives.
Such modifications often introduce new false positives or false
negatives (i.e., regressions), ultimately degrading the accuracy
and reliability of the refined rules. This risk is heightened by
the lack of semantic understanding of the rule’s intent and its
interaction with complex code patterns.

Our Solution. To address the above limitations, we propose
RULEREFINER, a framework featuring fact-based alignment,
differential fault localization, and template-guided refinement,
mainly based on the following key insights:

Insight 1: Leverage the static analysis engine to align the
logic between detection rules and the code under analysis.
Specifically, we utilize dynamic profiling information gen-
erated by static analysis engines, rather than relying solely
on the opaque reasoning of LLMs. This approach provides
a concrete, empirical basis for aligning detection rules with
the target code, effectively bridging the semantic gap caused
by the lack of detailed domain knowledge about the working
mechanisms of the analysis engine.

Insight 2: Perform differential analysis between the cor-
rectly handled regression cases and the defect-revealing case
to localize the root cause. We first abstract the detection rule
into a graph representation, where each path represents a
concrete detection logic (see Section III-C1). We then locate
the root cause by comparing the different detection paths of
the defect-revealing case and the correctly handled cases. In
particular, we focus on the correctly handled cases that have
similar detection paths, but also have subtle differences from
the defect-revealing ones, to reveal the potential fault locations.

Insight 3: Design targeted templates to constrain and guide
LLMs to generate localized and precise modifications. Instead
of querying LLMs to refine detection rules in an uncon-
strained, end-to-end manner, we design templates tailored to
the specific root causes [42]-[49]. These templates serve to
guide and constrain the inference of LLMs, ensuring that any
enhancements to the static detection rules are targeted and
minimally disruptive. This structured approach helps preserve
the original intent and logic of the rule, while allowing for
precise and constrained enhancement.

We implemented a prototype of RULEREFINER and eval-
vated its refinement capabilities on 218 real-world Semgrep
rule issues. The comprehensive evaluation demonstrated the
effectiveness of RULEREFINER, achieving up to an 80.28%
pass@5 success rate of refinement based on the DeepSeek
model. RULEREFINER significantly outperformed LLM-based
baseline approaches by 24%-68% relatively, underscoring the
effectiveness of our novel techniques. Our ablation study con-
firm that both its differential fault localization and template-

based refinement components are crucial, each substantially
contributing to the overall performance. Furthermore, we
leverage the existing analyzer testing tool [50] to generate
over 200K variants to test those refined rules by RULERE-
FINER systematically. The result shows that rules refined
by RULEREFINER demonstrated capabilities on par with the
expert-written rules in detecting defects across other code
variants, while maintaining high precision on regression cases.

Our paper makes the following main contributions:

o Originality: To the best of our knowledge, we are the first
to leverage LLMs to address the challenging task, refine-
ment of the off-the-shelf real-world static analyzer rules.
This brings new opportunities for research in automated
rule refinement and offers novel insights.

o Approach: We propose RULEREFINER, a novel multi-
stage framework designed to overcome the limitations
of end-to-end LLM approaches. RULEREFINER incorpo-
rates fact-aligned, template-constrained novel designs to
achieve precise and effective refinement.

o Evaluation: We evaluate RULEREFINER on 218 real-
world rule issues sourced. The result demonstrates that
RULEREFINER effectively addresses rule refinement tasks
and significantly outperforms the baseline methods.

e Open Source: We have open-sourced our dataset, the
implementation of RULEREFINER, and evaluation scripts
at: https://github.com/CGCL-codes/RuleRefiner/ for re-
producibility and further research.

II. BACKGROUND
A. Static Analyzers and Detection Rules

Static code analysis tools examine source code for issues
like vulnerabilities and errors without execution. They typ-
ically contain two parts: an analysis engine and a set of
detection rules. The engine performs general analysis (e.g.,
creating Abstract Syntax Trees or Control Flow Graphs) and
provides underlying capabilities for rules such as taint analysis.
A specific rule is designed to identify a particular problem
(e.g., hard-coded passwords, SQL injection), which is usually
built based on predicates and logical operations. Predicates
pinpoint specific code features (e.g., Semgrep’s pattern,
PMD’s XPath, CodeQL’s predicate). Logical operators
(AND, OR, NOT) then combine predicates into complex rules.

B. Explanation of A Motivation Example

Fig. 1 showcases a Semgrep rule for command injec-
tion detection. Statements under tags like pattern or
pattern-inside serve as predicates (e.g., at Loy, Log).
In these statements, “SX” matches variables that are shared
between predicates, and “...” acts as a wildcard. For instance,
the predicate at Los detects calls to command with one
argument from parameters of the caller (Los).

These predicates are then combined using logical opera-
tions, which are indicated by specific tags in the rule structure.
Tags like patterns (see Log) imply that the enclosed
predicates are combined with the AND logic. Similarly,
pattern-either (see Lo3) signifies an OR combination,

and pattern-not indicates the NOT logic. Therefore, the
overall detection logic of this example is as follows: the rule
identifies code instances where any parameter of a function
(as defined by the predicate at Lso) is found to flow into
an argument of a call to the command function (the sink,
identified by predicates like those at Los or Lss). This flow
can be direct (e.g., captured by the logic associated with Los)
or indirect (e.g., traced through an assignment statement or
certain function call specified by predicates at Log and L3q).

III. APPROACH
A. Problem Formulation

1) Rule Abstraction: Real-world detection rules are com-
plex and diverse. For simplicity and generality, we first abstract
static detection rules. Based on the formulation of existing
works [23], [51], [52] and our observations of the real-
world detection rules, we represent a detection rule as a set
of predicates together with logical operators. Formally, a
predicate can be defined as follows:

Definition 1. (Predicate). A predicate takes the code under
detection as input and returns the predicate satisfaction status:

p: code — True | False

where “code” represents the code under detection, and the
returned boolean value indicates whether the predicate is
satisfied (i.e., satisfaction status).

Definition 2. (Detection Rule). A detection rule is combined
by a series of predicates with logical operators. A compound
detection rule r can be defined recursively:

r=pl|lrAr|rvr|-r

Based on such abstraction, the rule in Fig. 1 can be denoted
as T'osei : P22 A (pas V ((p29 V ps1) Apsz2)), where the subscripts
denotes the line numbers where the predicate is located.

2) Test and Validation: As mentioned in Section I, there are
no rules with perfect precision and recall in practice. In this
paper, we use both the regression cases (i.e., true positive and
true negative cases) and the defect-revealing cases (i.c., false
positive and false negative cases) as the test suite (i.e., denoted
as T') for the refinement task.

Definition 3. (Test Cases). Formally, a test case is composed
of the code under detection and the expected detection results,
which is denoted as t,

t:< tcodea te:vpected >, te:vpected € {true, false}

where ?o4e is the code under detection, tegpecteq indicates the
expected detection result. In particular, teppected 15 true if tooge
is expected to be reported as a violation of the bug encrypted
by r, i.e., positive; otherwise negative.

Definition 4. (Defective Rule). If r is defective, there is at
least one test case t:

Jt S Ta tea;pected 7& T(tcode)

https://github.com/CGCL-codes/RuleRefiner/

! Defective
! Rule

| | Defect-Revealing
; &

Step 1: Graph Representation

Predicate Graph

Step 2: Dynamic Profilling

[Step 3: Fault Differentiation

3 Regression Cases|

EEET=EEEry Step 4: Constraint-based
[Refinement
""" outPUT
I Step 5: Validation & Regression Testing Refined Rule | !

Fig. 2: Overview of RULEREFINER. Dot-ended arrows de-
note input streams, triangular-ended arrows represent output
streams.

where r(t.oqe) refers to the actual detection result of code € oqe
against rule r under the static analuzer engine.

There can be multiple defects together with multiple defect-
revealing cases in one rule. It is noted that we only focus on
a single defect-revealing case for refinement each time.

Definition 5. (Defect-Revealing and Regression Cases). For-
mally, we denote the defect-revealing case t in Definition 4 as
€, while the regression cases in T as T.:

Fosci - P22 A (P25 V (P29 V P31) A P32)

Fig. 3: The predicate graph for the semgrep rule in Fig. 1.

the difference among them, the analysis isolates one or a
few potentially faulty predicates as the root cause.

o Template-Constrained Refinement: For each localized
fault, RULEREFINER generates a corresponding refine-
ment template and then prompts LLMs to make targeted
modifications to the defective rule based on the template.

« Validation: Finally, the refined rule 7 is rigorously val-
idated against both the defect-revealing test case e and
all regression test cases 7., ensuring that the refinement
has rectified the given defect without compromising the
original correct detection logic.

T = {e} UT,, €capected # T(€code)s Yt € Ty, tezpected = T(tcode) C. Graph Representation and Dynamic Profiling

3) Rule Refinement: Finally, the formulation of our rule
refinement task is defined as follows:

Definition 6. (Rule Refinement). The refinement task is de-
noted as a function F':

F: (T7 €, Tr) — f, €expected 7é T(Ecode)y
Vt € {6} U T,-, tea:pected = 'F(tcode)

where r denotes the defective detection rule, € refers to the
defect-revealing case, T, refers to the regression cases, and T
is the successful refined rule.

B. Overview

The high-level architecture of RULEREFINER is depicted in
Fig. 2. RULEREFINER takes an original defective detection
rule r, a specific defect-revealing test case €, and a set of
regression test cases 7, as inputs. The output is a refined
detection rule 7, which can pass the defect-revealing case ¢
while preserving the original logic by successfully passing
all regression test cases in 7. RULEREFINER contains five
principal stages:

o Graph Representation: The defective rule r is initially
translated into a predicate graph in which distinct paths
in the graph correspond to different branches of detection
logic embedded in the rule.

« Dynamic Profiling: This process profiles the satisfaction
status of each predicate, mapping the code under analysis
to specific detection logic paths in the predicate graph.

« Differential Fault Localization: RULEREFINER then
performs differential analysis based on predicate graphs
and the profiled satisfaction facts, comparing the defect-
revealing case e with regression cases 7,.. By focusing on

1) Prediacte Graph: To simplify the representation and
analysis of abstracted rules, we translate each rule into a graph
structure termed a predicate graph.

Definition 7. (Predicate Graph). A predicate graph is a
directed acyclic graph (DAG):

G = (s,e,N,E)

where s is the unique entry node, e is the unique exit node,

N is the set of all nodes, and E is the set of directed edges.
The set of all paths P in G from s to e is defined as:

P ={n=(v1,vs,..

(Vg, Vkt1) € E for all 1 <k < m}.

S Um) | U1 =8, 0, =e, and

In a graph, each node v € N (excluding s and e) typically
corresponds to an atomic predicate within the rule formulation.
The edges E represent the logical relationships governing
these predicates. Specifically, the logical AND operator is
realized by a sequential conjunction of nodes, while the logical
OR operator is represented by parallel disjunction branches.
Note that for the AND operator, the graph enforces a specific
order: the left-hand predicate is always placed closer to the
entry node s than the right-hand one, thus ensuring there is
only one unique graph for each rule.

Fig. 3 shows the predicate graph for the abstracted rule
(pa2 A (P25 V ((p209 V p31) Aps2))). There are three paths from
the entry to the end, which correspond to the three conjunctive
clauses in the disjunctive normal form of the rule (i.e., (paz A
p25)\/(p22 AP29 /\p32)\/(p22 Aps31 /\p32)). The rule is satisfied if
any one of its conjunctive clauses (e.g., (p22/Ap2s)) is satisfied.

Definition 8. (Detection Path). Given a detection rule r and
its predicate graph G. P indicates the set of all complete paths

in G. For a code snippet c, r is evaluated to be positive for
¢ (i.e., r(c) = True) iff there exists at least one positive path
m € P where all predicate p, corresponding to the node v
along m is positive:

r(c) =True < Iw P : Yv e, p,(c)=True

For example, the code snippet bad2 (in Fig. 1) satisfies
predicates pag2, p2g, and pss, corresponding to a specific path
(Start, paa, pag, P32, End) within the predicate graph (Fig. 3).
Consequently, the rule » would evaluate to positive for bad?2.

Note that we normalize the rule by recursively applying De
Morgan’s laws [53] to eliminate negations of compound pred-
icates. This ensures that only atomic predicates are negated,
resulting in a graph free of compound-negation nodes that is
more amenable to analysis. For example, —=((p1 A p2) V p3)
will be normalized into (—p; V —p3) A —p3.

2) Dynamic Profiling: Dynamic profiling captures the sat-
isfaction status of predicates in a rule for a given code
snippet t¢ode, indicating whether the code meets each predicate.
Formally, predicate satisfaction facts are defined as follows:

Definition 9. (Satisfaction Facts). Given a detection rule r
(composed of predicates), a static analyzer engine A, and a
test case t with code t..qe, the predicate satisfaction facts Sy
for test case t form a mapping:

St = {p — S | per, s= A(Tatcode;p)}

where p is a predicate within rule r, and s € {true, false}
is its satisfaction status for te.qe, as determined by engine A
when profiling predicate p.

For instance, predicate pos; (from Fig. 1, Los) checks if
USER_DATA (a parameter) is passed directly to the command
function as an argument. Dynamic profiling with the Semgrep
analyzer would yield Spaq1(p25) = True because the code
in badl exactly matches this condition (at Ls). Conversely,
for bad2, Spadz(pss) = False as USER_DATA is not directly
passed to command in that instance (at Lg).

D. Differential Fault Localization

Algorithm 1 illustrates the process of differential fault
localization. We use R to indicate the localization results, P
to indicate the set of paths in the predicate graph, p to indicate
a predicate, and S to indicate the mapping of satisfaction
facts. Function FindAllPaths returns all complete paths
in the given graph. Function Filter will filter out the
irrelevant paths based on the satisfaction facts (L15-La2). The
differential comparison algorithm is implemented from Los-
L3s. The whole process can be split into two parts in general:
the differential analysis (L;-Lj2) and the prioritization (Li3).

1) Differential Analysis: As mentioned in Definition 8§, the
detection logic can be represented as paths in the predicate
graph. The key insight is that defect-revealing cases are often
slight variants of regression cases, sharing most detection logic
but differing in a few overlooked features due to buggy predi-
cates. RULEREFINER leverages these differences by analyzing

Algorithm 1: Differential Fault Localization

Input : Defective rule r, predicate graph G, defect-revealing case €
and the regression cases 1.
Output: Prioritized fault localizations Rprioritized-

R+ 0;
Pan < FindAllPaths(G) ;
Se « Profiling(r, €code) ;
Pe Filter(Pan, SE)
// travesal regression cases
foreach t < T do
if toctual = €expected then
St < Profiling(r, teode)
Pt +— Filter('Pau, St)
// travesal paths
9 foreach Path. € Pe do
10 foreach Path: € P; do
11 res < Diff(Pathe, Patht, Se, St)
12 L R+ RU{res}

13 Rprioritized < Prioritize(R)
14 return Rp'rioritized

// localization results
// get all paths
// satisfaction status

AW N =

® 9w

Input : A set of Paths P, a set of satisfaction status S.
Output: All positive/negative paths for positive/negative cases.
15 Function Filter (P, S)
16 Ppos
17 {Path € P | Vp € Path, S(p) = True}
18 Preg < P \ Ppos
19 if Ppos # 0 then

return Ppos ; // positive case

21 else
22 L return Ppeg ; // negative case
Input : Paths under comparison Pathi, Pathg and the
corresponding satisfaction status S1, Sa.
Output: Sets of intersections, intervals, and the differential results.
23 Function Diff (Pathy, Patho, S1, S2)

24 intersections <— {v | v € Pathy N Pathz}
25 foreach its < intersections do
26 if S1(its) # Sa(its) then
27 | diff = diff U {(is,is)}
28 interval_pairs <
getIntervals(Pathi, Patha,intersections)
29 foreach (itvi,itve) interval_pairs do
30 i Apcito, S1(P) # Apeitw, S2(p) then
31 L diff = diff U {(itv1, itva) }
32 | return intersections, interval_pair, diff

detection paths to pinpoint the root cause, narrowing it from
the entire rule to one or a few suspect predicates.

To obtain the fault localizations, RULEREFINER conducts
a pair-wise comparison between every pair of paths (L5 to
L15) and collects the potential buggy predicates. The imple-
mentation of the comparison on two paths is in the function
Diff (Log to L3o). In Diff, we split the path pairs into
intersections and interval pairs (Lss and Lsg). For each part,
we compare the satisfaction facts respectively and output them
if they do not match (Log and Lsg). Formally, we define the
intersections and interval pairs as follows:

Definition 10. (Intersections and Interval Pairs). For two
paths Py and Py, its intersection its p, p,) is defined as:

itsp,.p,) = {v|v € PN Py}

O—>9

>®
' ®

@ €

t

ol | (D

Fig. 4: Example for differential results prioritization. The
green, blue, and red paths refer to the detection logic of
regression case t1, t2, and the defect-revealing case ¢, respec-
tively. The numbered predicates, except the red node pg, are
all satisfied by the test case, respectively.

While the interval pairs itv p, p,) is then defined as the pairs
of partial paths between adjacent intersections v;, v;.

itvp, p,y ={{Intervalp,(i,j), Intervalp, (i, j)) |

Vi, v € its p, p,y A adj(vi,v;)}

where Intervalp(i,j) indicates the path slice between v;
and v; in path P, with v; and v; excluded. We denote two
intersections v;,v; € itsp, p,) are adjacent, iff no other
intersection lies between them on either path:

adj(vi,vj) <= v; <v; A Ao, € itS(p,,p,) * Vi < Vg < Uj
where v; < v; indicates that v; appers before v; in both paths.

For instance, by comparing the paths of € (red path) and ¢;
(green path) in Fig. 4, we obtain three intersections, denoted
as {Start, 3, End} and two interval pairs between them.
We denote the interval pair between intersections Start and
3as{(5,6), (1,2)) and the interval pairs between between
intersections 3 and End as ((7), (4)), respectively.

We do not compare two paths by exactly matching the entire
paths. Instead, Diff allows two cases to satisfy disjunction
branches that indicate alternative detection logic to make the
comparison more general in practice.

To make the comparison more efficient, we only focus on
cases with the same expected detection results as the defect-
revealing one (Lg). For example, we only conduct comparison
on false positive cases (i.e., expected to be negative) with
true negative cases. Furthermore, we also conduct filtering
to exclude the irrelevant paths (L4 and Lg) based on the
satisfaction facts. Specifically, we filter out the negative paths
in the positive cases (Lgg), where the detection logic is
only related to the paths where all the predicates of it are
satisfied (Definition 8). While for negative cases, all paths
contain unsatisfied predicates, it is non-trivial to select the
actual detection logic without precise semantics information.
Therefore, we keep all paths for soundness (Lo2).

2) Prioritization: To refine the output, we select the top-
N localization results after differential analysis. As mentioned
above, the subtle difference can often reveal the precise root
cause. Our approach prioritizes pairs with the most similar
detection logic but different detection results.

()

(a) Overfitting

(b) Underfitting

B g @
®
i
o=

Fig. 5: Incorrect refinement.

Fig. 6: Template example.

Specifically, the prioritization score for a path pair is calcu-
lated as follows:

|Intervals| 4+ |Intersections| — |Diff|

Diff]

score =

where |Intervals|, |[Intersections|, and |Diff] denote the total
number of intervals, the total number of intersections, and the
number of different intervals or intersections identified by the
differential analysis, respectively.

Fig. 4 showcases an example for prioritization. The green,
blue, and red paths refer to the detection logic of regression
case ty, to, and the defect-revealing case e, respectively. All
the numbered predicates except the red node pg are satisfied
by each test case. Comparing the defect-revealing case ¢ (red
path) with the regression case t; (green path) involves two
intervals and three intersections (i.e., Start, 3, End, with
one interval with different status (i.e., {(5,6), (1,2))).
This yields a prioritization score of (2 +3 — 1)/1 = 4.
In contrast, comparing € with the regression case to (blue
path) involves one interval and two intersections, also with
one different interval (i.e., ((8, 9,10,11), (5,6,3,7))),
resulting in a score of (1 +2 — 1)/1 = 2. Consequently, the
localization result derived from the (¢, ¢;) pair, specifically the
interval ((5,6), (1,2)) which contains the actual buggy
predicate pg, receives a higher rank and is considered first.

Algorithm 2: Template Generation Algorithm

Input : The predicate graph of defective rule g, satisfaction status
Se and Sy, a intersection or interval in dif f, denote as it.
Output: refinement template.

1 ph < genPlaceHolder Predicate() // A placeholder,
will be filled by LLM
2 if isIntersection(it) then

3 (p,p) < it

4 if Sc[p] A —S¢[p] then

5 | return Replace(gr,p,ph A p)

6 | return Replace(gr,p,ph V p)

7 else

8 | (ite,ity) < it

9 if Apcir, Selpl A= Apeir, Selp] then
10 | return Replace(gr,ite, ph A ite)
11 | return Replace(gr, ite, ph V ite)

E. Template-Based Refinement

Providing LLMs solely with the root cause information
from Top-N fault localizations often proves insufficient for
robust rule refinement. Due to complex and intricate depen-
dencies between predicates, LLMs, when attempting repairs,
can inadvertently undermine the carefully crafted detection
logic of the original rule. Fig. 5 showcases several common
incorrect refinements on predicate logic structures (the correct
version is shown in Fig 3). The root causes include: (a)
direct replacement of the original predicate (from pag to p31),
leading to new false negatives; (b) faulty logical combinations
(e.g., using AND instead of OR), causing broken rules; or (c)
generation of overly broad, independent detection paths for
the new predicate, resulting in numerous false positives.

To address these limitations, we introduce template-based
refinement, which constrains LLMs to perform effective yet
impact-limited modifications. Fig. 6 illustrates the modifica-
tions. Our approach preserves the original predicates (not
shown in Fig. 6) while applying targeted, regional modifica-
tions (marked as new) around the identified root cause (marked
as buggy). At a high level, the modification can be grouped
into two categories: the overfitting cases and the underfitting
cases. We say a predicate is:

o underfitting if the defect-revealing case satisfies the prob-
lematic predicate, but it is expected not to (Ly4).

o overfitting if the defect-revealing case does not satisfy the
problematic predicate, but it is expected to do so (Lg).

Based on this category, we leverage different pre-built
logic skeletons to construct refinement templates, detailed in
Algorithm 2. For overfitting cases, an additional predicate is
inserted into the detection path after the underfitting predicate
(Fig. 6a). This checkpoint is designed to filter out defect-
revealing cases. For underfitting cases, a new branch is added
around the buggy predicate to accommodate defect-revealing
cases (i.e., false negatives), thereby preventing them from
being incorrectly excluded (Fig. 6b). Specifically, given a
localization result it (a potential buggy intersection or in-
terval), the algorithm first introduces a placeholder predi-
cate ph to denote the position for new logic (L;, gener-
ated by function genPlaceHolderPredicate). Then, for
underfitting predicates, a conjunctive template (e.g., ph A
original_predicate) is generated (Ls). For overfitting predi-
cates, a disjunctive template (e.g., ph V original_predicate)
is created (Lg). An interval containing multiple predicates is
treated as a whole, applying similar generation logic (Lg-L11).

Note that Fig. 2 only shows the high-level logic structure
of the modification. In practice, the actual implementation
includes multiple subclass templates for each category. For
instance, to address overfitting rules, RULEREFINER imple-
ments six distinct subclass templates that incorporate different
constraint predicates and relational operations based on the
Semgrep rule grammar. Specifically, there are templates: (a)
include/exclude an extra control flow pattern; (b) include/ex-
clude an extra code context pattern; (c) include/exclude an
extra data flow constraint on certain variables.

TABLE I: Rule abstraction of Semgrep

Semgrep Rule Syntax Type Abstration

pattern(-not)(-regex|-inside) . _

metavariable-[pattern|regex] Predicate)p

metavariable-[name|comparison]

patterns-either

sources|sinks| pVp
s|s propagators Logic

patterns g pPAD

sanitizers -(pVp

Finally, the original buggy predicates in the predicate graph
are replaced by the generated template structure. RULERE-
FINER generates such a template for each buggy predicate
identified in the top-N prioritized results from the differential
analysis.

F. LLM Refinement and Validation

Fig. 7 showcases the format of the prompt we used in
RULEREFINER. After the templates with placeholders are
generated, they will be translated back to the syntax of
the original rule. We unite the code defective rule r, the
code defect-revealing case e, regression case e, the difference
analysis result of them ([Detection Difference]), and
the generated template ([Refinement Template]) into
the prompt. We also prompt LLMs to follow a certain out-
put format ([Output Format]) and think step by step
([CoT Steps]). Then, based on the defined output for-
mat ([Output Format]), RULEREFINER automatically ex-
tracts refined rule 7 from the response of LLMs.

The validation of the refined rule 7 proceeds as follows:
First, 7 must correctly classify the defect-revealing test case ¢,
thereby confirming that the original defect has been rectified.
Second, 7 must pass all regression test cases in the set 7.
This regression testing ensures that the refinement process
has not inadvertently introduced new false positives or false
negatives. RULEREFINER designates a refined rule 7 as suc-
cessful if it satisfies both these validation criteria and outputs
it accordingly. If 7 fails either test, RULEREFINER reports the
refinement attempt as unsuccessful.

IV. EVALUATION

A. Implementation, Dataset, and Setup

1) Implementation: We select Semgrep to implement and
evaluate our idea among some of the most widely used
static application security testing (SAST) tools (i.e., Semgrep,

Semgrep Rule Refinement Task
Input Parameters
[Defective Rule] + [Defect-revealing Case]
Reference Case
[Regression Case] + [Detection Difference]
#t Task Requirements
[Refinement Template] + [Output Format] + [CoT Steps]

Fig. 7: Format of refinement prompt.

TABLE II: Dataset Statistics

Pred. Tests

Dataset Num Total Avg. Total Avg. Date
FP 131 946 7.22 1,242 9.48 | 2020.06.07
FN 87 870 10 970 11.15 to
Total 218 1,816 8.33 2,212 10.15 | 2024.10.24

CodeQL, SonarQube, PMD, CppCheck) for three main rea-
sons: 1) Popularity: Semgrep gains the most stars on GitHub
among the selected SAST tools; 2) Significance: more than
20K detection rules are built upon Semgrep. For example,
GitLab officially supports Semgrep as the analyzer in their
CI/CD pipeline. 3) Maintenance: Semgrep and the community
maintain an active repository of all the detection rules, from
which we can obtain plenty of historical refinement commits to
construct our dataset to perform evaluation. Note that the core
approach of RULEREFINER (Section III) is analyzer-agnostic.
We discuss the migration to other static analyzers such as PMD
and Coccinelle in Section V-A.

For Semgrep rule abstraction, we employ a custom parser
built on PyYAML to parse Semgrep rules and abstract their
predicates and logical operations. The abstractions are il-
lustrated in Table I, which contrasts the original Semgrep
syntax with its abstracted forms. For fact profiling, we uti-
lize the debugging feature provided by the Semgrep engine
(-—matching-explanations) to capture satisfaction sta-
tus during detection dynamically.

2) Dataset: We collected historical rule refinements from
the open-source Semgrep rule repository' using an automated
script, identifying 371 refinement commits on the ruleset. We
extracted a tuple < 7,74, E,, € > representing the original
rule, the refined rule, existing tests, and a new defect-revealing
test from each refinement commit and filtered out commits
without regression tests or defect-revealing cases. We also
manually excluded five reconstruction commits. In the end,
we obtained a final dataset of 218 samples (Table II).

3) Baseline Selection and Design: Our work is the first to
focus on refining complex and human-written static analysis
rules via LLM. This is a new yet challenging task, and thus,
there are no off-the-shelf tools to serve as baselines. Existing
early works that do not leverage LL.Ms, such as RhoSynth [23]
and SQUID [51], are designed for specific datalog-based
analyzers and not open-source, adapting and comparing with
them are challenging due to heavy reimplementation works.

KNighter [54] is the most relevant LLM-based approach,
which employs LLMs to generate checkers of Clang Static
Analyzer from code patches, and further leverages LLMs to
refine the generated checkers (i.e., given the LLM-generated
imperfect checker and defect-revealing case). KNighter refines
checkers using chain-of-thought (CoT) prompting, where the
LLM first generates a refinement plan before producing the
final output. We adapt its refinement prompt to Semgrep as
a baseline for comparison (denoted as baseline.) since its
target analyzer differs from ours. To systematically evaluate

Uhttps://github.com/semgrep/semgrep-rules

the impact of prompt strategies besides CoT, we further
design a suite of baselines, including baseline (i.e., LLM
with basic prompt without complex strategies), baselinef
(i.e., employing the few-shot strategy only), and baseline.y
(i.e., employing both the few-shot and CoT strategies).

4) Setup: We set up five RQs to evaluate RULEREFINER:

e RQI: Effectiveness: How many real-world defective
rules can RULEREFINER auto-correct?

o RQ2: Improvement: How does RULEREFINER perform
comparing to the designed baselines?

e RQ3: Configuration Analysis: How do the various
configurations of LLMs affect the performance?

o RQ4: Ablation Study: What is the contribution of each
major component of RULEREFINER?

e RQ5: Generalization: Do RULEREFINER-refined rules
generalize similar to expert-written ones?

We evaluate RULEREFINER and the baseline approaches
using the pass@k metric [55], which measures the proportion
of tasks being solved within k attempts. Specifically, for
each rule, we run k independent refinements. An attempt is
successful if the refined rule passes the defect-revealing test
case and all regression tests (see Section III-F). The overall
task is passed if any one of the k attempts is successful.

We evaluate RULEREFINER on three latest popular LLMs:
GPT-40-mini, DeepSeek-V3-0324, and Qwen-plus-0428. These
models are all accessible via API, cost-efficient, and similarly
priced (approximately $1 per million tokens). The low cost,
combined with their performance, demonstrates the feasibility
of our approach for practical usage at scale. Unless specif-
ically stated, the hyperparameters are kept the same during
comparisons with baselines (i.e., temperature=0.0, top_k=0.95,
max_token=8192, top_p=20). In differential analysis, we se-
lect the top 5 localization results. We repeat each experiment
three times and take the average as the final result. All our
experiments are performed on a server with a 96-core Intel
Xeon Gold 6248R CPU and 256GB of SSD memory.

B. RQI: Effectiveness

In RQI1, we run RULEREFINER on all three selected LLMs
under the default setting as mentioned above. As shown in col-
umn “RULEREFINER” in Table III, the results demonstrate the
effectiveness of RULEREFINER for rule refinement. Specif-
ically, the results demonstrate that RULEREFINER based on
DeepSeek-V3 and Qwen-plus achieve a success rate of 80.28%
and 73.39%, respectively. Even the lightweight GPT40-mini
model refined 108 rules, a notable success rate of 49.54%,
indicating that capable performance is attainable with minimal
computational resources.

The above empirical results demonstrate that RULERE-
FINER significantly advances the automated maintenance of
static rules. RULEREFINER, empowered by cost-efficient
LLMs, can successfully resolve over 80.0% of real-world
defects in real-time. By automating these routine corrections,
RULEREFINER enables maintainers to dedicate their expertise
and efforts to the remaining minority of complex and high-
value issues.

https://github.com/semgrep/semgrep-rules

TABLE III: The pass@5 success rate of rule refinement on our dataset. “Basic”, “Few-shot”,“CoT”, and “CoT+Few-shot ’refer
to baselines with naive, Few-shot, Chain-of-Thoughts (CoT), and Few-shot plus CoT style prompts

LLM baseline baseline baseline, baseline.y RULEREFINER
GPT40-mini 77 35.32% 66 30.28% 65 29.82% 72 33.03% | 108 49.54 %
Qwen-plus 86 39.45% 92 42.20% 95 43.58% 95 43.58% | 160 73.39%
DeepSeek-V3 | 128 58.72% 141 64.68% 109 50.00% 141 64.68% | 175 80.28 %

90% 70%

- 10, 82.6%
5 80.3% __.__’_

80% 60%

e
70% <

’l

50%

- @- DeepSeek-V3
—&— GPT4o0-mini

pass@k

60% 40%

50%

30%
1 2 3 4 5 6 7 8 9

10
Fig. 8: The pass@k success rate results with different retry
times (i.e., k).

C. RQ2: Comparision against Baselines

As shown in Table III, RULEREFINER achieves significant
and consistent performance improvements over all baseline
methods across each LLM. Specifically, RULEREFINER at-
tains the highest pass@5 success rates on all three mod-
els: 49.54% on GPT40-mini, 73.39% on Qwen-plus, and
80.28% on DeepSeek-V3. When compared to the strongest
baseline for each model, RULEREFINER shows substantial
gains: on GPT4o-mini, it improves upon the best baseline
(baseline, 35.32%) by 1.40x relatively; on Qwen-plus, it
outperforms the best baselines (baseline., and baseline.y,
both at 43.58%) by 1.68x relatively; and on DeepSeek-V3,
it exceeds the best baselines (baseliney and baseline.y, both
at 64.68%) by 1.24 x relatively. These results demonstrate that
RULEREFINER consistently enhances refinement performance
regardless of the underlying LLMs and prompt strategies.

In contrast, conventional prompt strategies (e.g., few-shot
and CoT) yield limited improvements and even lead to per-
formance degradation in certain scenarios. For example, on
the GPT4o0-mini model, both few-shot and CoT prompting
(i.e., baseliney, baseline., and baseline.y) perform worse
than naive prompting (i.e., baseline). A performance drop
is also observed with the CoT baseline (i.e., baseline.) on
DeepSeek-V3. We attribute these results to two main factors.
First, the limited size of GPT40-mini makes it prone to
overfitting to the specific refinement strategies presented in
the few-shot examples, thereby impairing its generalization
capability. Second, for CoT baselines (i.e., baseline. and
baseline.s), the lack of fact-based grounding allows halluci-
nations to emerge and accumulate during extended reasoning
chains, ultimately compromising refinement performance [56].

D. RQ3: Configuration Analysis

In this RQ, we evaluate the impact of temperature settings
and retry times of RULEREFINER, which are the two key

TABLE IV: The pass@5 results with different temperatures

Temperature
LLM 0.0 05 1.0
GPT40-mini 108 49.54% | 120 55.05% | 127 58.26%
Qwen-plus 160 73.39% | 158 72.48% | 158 72.48%
Deepseek-V3 | 175 80.28% | 170 77.98% | 169 77.52%

settings that can be configured in RULEREFINER. Fig. 8
showcases the pass@k results under different retry times
(i.e., K). The results show significant performance gains in the
first several rounds of retries. However, the returns diminish,
with subsequent retries providing only marginal improvement.
It shows that the results in RQ1 can be further improved
with more retries (e.g., 82.6% with 10 retries on DeepSeek).
However, the computational cost nearly doubles. Therefore,
for practical use, we recommend setting a retry limit of 4-6
to optimally balance performance and cost for the refinement
tasks.

As shown in Table IV, the effect of temperature varies
across the different models. For the larger models (e.g., Qwen
and DeepSeek), a temperature of zero yields slightly better
pass@5 scores. In contrast, the smaller GPT-40-mini model
performs best at a higher temperature of 1.0. We interpret
that this discrepancy stems from model capability. For the
DeepSeek and Qwen models, the most confident responses
generated under zero temperature are more likely to be cor-
rect; therefore, a higher temperature increases the risk of
bypassing the correct solution within the five attempts. How-
ever, GPT-40-mini, which has relatively weaker reasoning and
understanding abilities, benefits from the increased diversity,
sampling from a broader range of potential outputs, thereby
improving the chance of generating a correct solution.

E. RQ4: Ablation Study

Table V shows the results of our ablation study, which
clearly demonstrate the individual and combined contributions
of differential fault localization and template-based refinement
to the overall performance of RULEREFINER.

Specifically, across all three LLMs, there is a consistent
and significant improvement in the pass@1 rate as more
components of RULEREFINER are enabled. For instance,
with Deepseek, RULEREFINER-LT (lacking both differential
localization and template-based refinement) achieves a 32.57%
pass rate. Adding differential localization (RULEREFINER-T)
boosts this to 56.88%, and further incorporating template-
based refinement elevates the performance to 62.84%. This
trend underscores the critical roles of both differential fault

o [A A
¥ command-econ-2
II HTRTETHT]

command- |nJect|on 1

hardcoded-conditional

12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

@M@ﬂﬂq‘
(AR T TR
|_=Ground Truth _ORuleRefiner |

Fig. 9: Comparison of generalization scores between expert refined (i.e., Ground Truth) and RULEREFINER-refined Java rules
on defect-revealing variants. The X-axis represents different defect rules, and the Y-axis represents the generalization score.

TABLE V: The pass@1 result of the ablation study,
“RULEREFINER-LT”, “RULEREFINER-T”, “RULEREFINER”
indicate RULEREFINER without differential localization and
template-based refinement, without template-based refinement
only and RULEREFINER with all features, respectively.

LLM RULEREFINER-LT | RULEREFINER-T | RULEREFINER
GPT40-mini | 53 2431% | 57 26.15%| 76 34.86%
QWEN 55 2523% | 96 44.04% | 115 52.75%
Deepseek |71 32.57% | 124 56.88% | 137 62.84%

localization in accurately identifying the root cause of the
buggy rule predicate and template-based refinement in guiding
the LLM to make precise and effective corrections.

F. RQS5: Generalization

In RQ5, we evaluate the generalization capability of rules
refined by RULEREFINER in comparison to expert-refined
ground truth rules. Specifically, we employ Statfier [50], a
state-of-the-art testing tool for static analyzer rules, to generate
semantic-preserving variants and assess the pass rate of each
refined rule over these variants. A higher pass rate indicates
stronger generalization, as the rule can correctly identify more
semantically equivalent buggy code patterns. We then compare
the scores between RULEREFINER-refined rules and expert-
written rules. If the scores are comparable, we conclude that
the corresponding rules exhibit similar generalization capabil-
ity in detecting buggy code variants. Since Statfier is designed
for Java, we restrict this experiment to Java rules. As presented
in Table VI, the evaluation covers 126 test cases and 207K
generated variants in total. The results demonstrate that the
generalization performance of RULEREFINER-refined rules is
highly aligned with that of expert-written rules. Most notably,
RULEREFINER achieves identical performance to the ground
truth on regression test variants (98.08%), while even slightly
surpassing expert performance on defect-revealing variants
(96.68% vs. 96.61%). This indicates that RULEREFINER can
indeed refine rules while not breaking the regression functional
equivalence and generating well-generalized patterns as the
expert-written ones.

To further interpret the above results, we conduct a fine-
grained analysis of the results on the defect-revealing variants.
Fig. 9 illustrates the generalization score for each defective
rule across all 42 defect-revealing test variants. The results
indicate that for the vast majority of rules, both the expert-

TABLE VI: The testing results of RQ5. “Num.” indicates the
number of test cases, “Variant Num.” indicates the number of
variants generated for generalization evaluation.

Category Num. Variant Num. | Ground Truth | RULEREFINER
Defect-revealing 42 51K 96.61% 96.68%
Regression 84 156K 98.08% 98.08%
Total 126 207K 97.71% 97.73%

1 * if (E == NULL)

2 { ... when != if (E == NULL) S1 else S2

3 when != E = E1

4

A N @
¢ | e (PoCr-(P)

7 * DEREF(E

= ()

9 ... when any

10 } else S3 Feocci * Pit A (-P2/A-P3 A(PsVP7))

Fig. 10: Rule abstraction of a Coccinelle rule, the metavariable
definitions are omitted for simplification.

written and RULEREFINER-refined rules correctly handle all
generated variants. Only a small number of rules (4 out of 42)
exhibit inconsistent behaviors, as marked in Fig. 9. Among
these, only one case demonstrates a substantial decrease in
generalization capability compared to the expert-refined rule
(i.e., command-injection-1). Our manual inspection re-
veals that for this case, the LLM overfits a specific syntactic
pattern in the defect-revealing example, thus resulting in a
reduced score. However, the overfitting is rare (2.4%) and can
be readily addressed by incorporating failing test cases into a
subsequent refinement iteration.

V. DISCUSSION
A. Adaptation To Other Analyzers

To adapt RULEREFINER for static analyzers beyond Sem-
grep, two primary components require careful modification:
rule abstraction and the dynamic profiling interface.

Rule abstraction involves translating diverse rule languages
into the standardized format RULEREFINER utilizes, as de-
tailed in Section III-Al. It is important to note that this
process does not require capturing all grammatical details
of the rule or the underlying matching mechanisms of the
analysis engine. Instead, for adaptation purposes, the emphasis
lies on selecting a suitable level of abstraction that enables
the decomposition of the entire detection rule into verifiable

elements (i.e., predicates) and supports the modeling of logical
relationships among them. Following this principle, we treat
these elements as atomic units, abstracting away any internal
logic or complex grammar they might contain.

For example, Coccinelle [57] is a program matching and
transformation tool widely used for evolving the Linux kernel.
As illustrated in Fig. 10, rules in Coccinelle are written in the
SmPL? language and the rule is used to detect null pointer
dereferences in C programs. Specifically, SmPL uses *(
p_1l |...| p_n)” to indicate the disjunction of patterns
(e.g., Ls4-Lg), and uses “when !=" to specify the whitelist
pattern (e.g., Lo). Besides, sequential statements are treated
as conjunctions. Thus, the rule in Fig. 10 can be translated to
pif A (—p2 A=p3 A (ps V ps)), where p;r indicates the pattern
cross L to L1g, which matches the outermost if-else branch.
The graph representation is also illustrated in Fig. 10.

Moreover, for rules written in general-purpose languages
(GPLs) (e.g., CSA or PMD), predicates are typically identified
within the branch conditions and assertions. The predicates
and logical flow can be extracted by analyzing the control
flow graph of the code that defines the rule.

The dynamic profiling interface, crucial for RULEREFINER
to understand rule behavior, also needs analyzer-specific tailor-
ing. For DSL-based rules, profiling might necessitate support
from the analyzer engine to expose predicate satisfaction
facts. For GPL-based rules, profiling information can often
be obtained by instrumenting the code to capture execution
traces and correlating this data (like condition coverage) back
to specific rule elements.

B. Failures in Refinement

Although our evaluation shows that RULEREFINER can
successfully handle 70%—-80% of real-world refinement tasks
using DeepSeek and Qwen within five attempts, there are also
challenging cases that RULEREFINER cannot yet automatically
correct due to the complexity of real-world issues.

First, rules with inadequate test suites hinder fault local-
ization, reducing performance. Second, our template-based
approach cannot manage rules needing complete redesign,
such as shifting from pattern-matching to taint analysis. Third,
LLMs sometimes misunderstand vulnerabilities or struggle
with complex grammar, leading to overly specific or syntac-
tically incorrect rules. We plan to mitigate these by using
LLMs to generate tests and integrating RAG to provide richer
context. To address this, we plan to integrate more context
(grammar documents, CVE details, and additional examples)
and use Retrieval-Augmented Generation (RAG) techniques to
improve the performance in our future work.

VI. RELATED WORK
A. Static Analyzer False Alarm Mitigation

Research in false alarm mitigation employs two main
strategies. The first enhances the static analyzer itself, using

Zhttps://coccinelle.gitlabpages.inria.fr/website/docs/main_grammar.html

advanced algorithms or, more recently, LLMs to infer specifi-
cations and prune paths for improved precision [28], [29], [39],
[58]-[60]. The second strategy filters warnings after they are
generated, using historical data to classify them or leveraging
LLMs to identify false positives directly from warning lists
[27], [40], [61]. A key limitation of these post-hoc methods
is that they do not fix the analyzer’s rules and can introduce
false negatives. In contrast, RULEREFINER addresses the root
cause by directly refining the defective ruleset to eliminate
both false positives and false negatives.

B. Static Analysis Detection Rule Generation

A distinct area of research explores the generation or syn-
thesis of new static analyzer detection rules, often from code
examples or specifications [62]. For example, RhoSynth [23]
performs rule synthesis on graph representations of code using
a novel graph alignment algorithm. SQUID [51] synthesizes
code search queries for Datalog-based analyzers from positive
and negative examples, employing pruning techniques to man-
age the search space. KNighter [54] utilizes LLMs to generate
checkers for the Clang Static Analyzer from code patches,
although Knighter also leverages LLMs to refine the generated
rules, but the refinement is conducted directly by querying
LLMs (as our basic prompt baseline). These works primarily
concentrate on creating new static analyzer rules from scratch
or based on provided exemplars. This differs fundamentally
from our work with RULEREFINER, which focuses on the
refinement of existing, potentially complex and human-written,
rules to correct identified false positives and/or false negatives.

VII. CONCLUSION

This paper proposes RULEREFINER, a pioneering frame-
work for automatic refinement of defective static analysis
rules. RULEREFINER empowers LLMs to directly refine static
analysis rules by dynamic profiling, differential fault localiza-
tion, and template-based refinement. We evaluate RULERE-
FINER on the real-world rule refinement issues, the evaluation
results demonstrate promising performance of RULEREFINER,
achieving up to a success rate of 80.28% and substantially
outperforming baseline LLM prompting strategies. Further-
more, rules refined by RULEREFINER exhibited generalization
capabilities comparable to those crafted by human experts.

ACKNOWLEDGEMENT

We sincerely thank all anonymous reviewers for their valu-
able feedback and guidance in improving this paper. This work
was sponsored by the Major Program (JD) of Hubei Province
(N0.2023BAA024).

REFERENCES

[1] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” in Empir. Softw. Eng., vol. 25, no. 2, 2020, pp. 1419-
1457. [Online]. Available: https://doi.org/10.1007/s10664-019-09750-5

[2] D. Distefano, M. Fihndrich, F. Logozzo, and P. W. O’Hearn, “Scaling
static analyses at facebook,” Commun. ACM, vol. 62, no. 8, pp. 62-70,
2019. [Online]. Available: https://doi.org/10.1145/3338112

https://coccinelle.gitlabpages.inria.fr/website/docs/main_grammar.html
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1145/3338112

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]
(13]
(14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan, “Lessons from building static analysis tools at google,”
Commun. ACM, vol. 61, no. 4, pp. 58-66, 2018. [Online]. Available:
https://doi.org/10.1145/3188720

J. Bai, “BESA: extending bugs triggered by runtime testing via static
analysis,” in Proceedings of the Twentieth European Conference on
Computer Systems, EuroSys 2025, Rotterdam, The Netherlands, March
30-April 3, 2025. ACM, 2025, pp. 1077-1091. [Online]. Available:
https://doi.org/10.1145/3689031.3696089

Z. Li, J. Wang, M. Sun, and J. C. S. Lui, “Mirchecker: Detecting
bugs in rust programs via static analysis,” in Proceedings of the
2021 ACM SIGSAC conference on computer and communications
security. ACM, 2021, pp. 2183-2196. [Online]. Available: https:
//doi.org/10.1145/3460120.3484541

M. Cui, C. Chen, H. Xu, and Y. Zhou, “Safedrop: Detecting memory
deallocation bugs of rust programs via static data-flow analysis,” ACM
Trans. Softw. Eng. Methodol., vol. 32, no. 4, pp. 82:1-82:21, 2023.
[Online]. Available: https://doi.org/10.1145/3542948

J. Yan, J. Huang, C. Fang, J. Yan, and J. Zhang, “Better debugging:
Combining static analysis and Ilms for explainable crashing fault
localization,” CoRR, vol. abs/2408.12070, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2408.12070

A. Mordahl, Z. Zhang, D. Soles, and S. Wei, “ECSTATIC:
an extensible framework for testing and debugging configurable
static analysis,” in Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2023, pp. 550-562. [Online]. Available:
https://doi.org/10.1109/ICSE48619.2023.00056

A. Mordahl, D. Soles, M. Miao, Z. Zhang, and S. Wei, “ECSTATIC:
automatic configuration-aware testing and debugging of static analysis
tools,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,
WA, USA, July 17-21, 2023. ACM, 2023, pp. 1479-1482. [Online].
Available: https://doi.org/10.1145/3597926.3604918

J. Bai, J. Lawall, Q. Chen, and S. Hu, “Effective static analysis of
concurrency use-after-free bugs in linux device drivers,” in Proceedings
of the 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019. USENIX Association, 2019, pp.
255-268. [Online]. Available: https://www.usenix.org/conference/atc19/
presentation/bai

Sonarqube. [Online]. Available: https://www.sonarsource.com/
Errorprone. [Online]. Available: https://github.com/google/error-prone
Infer. [Online]. Available: https://github.com/facebook/infer

Semgrep. [Online]. Available: https://github.com/semgrep/semgrep
Codeql. [Online]. Available: https://github.com/github/codeql

Pmd. [Online]. Available: https://github.com/github/pmd

B. Aloraini, M. Nagappan, D. M. Germdn, S. Hayashi, and Y. Higo,
“An empirical study of security warnings from static application
security testing tools,” J. Syst. Softw., vol. 158, 2019. [Online].
Available: https://doi.org/10.1016/].jss.2019.110427

J. Yang, L. Tan, J. Peyton, and K. A. Duer, “Towards better
utilizing static application security testing,” in Proceedings of the
41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019. 1EEE / ACM, 2019, pp. 51-60. [Online]. Available:
https://doi.org/10.1109/ICSE-SEIP.2019.00014

A. S. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, ‘“”false
negative - that one is going to kill you”: Understanding industry
perspectives of static analysis based security testing,” in Proceedings
of IEEE Symposium on Security and Privacy, SP 2024, San Francisco,
CA, USA, May 19-23, 2024. IEEE, 2024, pp. 3979-3997. [Online].
Available: https://doi.org/10.1109/SP54263.2024.00019

W. He, P. Di, M. Ming, C. Zhang, T. Su, S. Li, and Y. Sui, “Finding
and understanding defects in static analyzers by constructing automated
oracles,” Proc. ACM Softw. Eng., vol. 1, no. FSE, pp. 1656-1678,
2024. [Online]. Available: https://doi.org/10.1145/3660781

M. Fourné, D. D. A. Braga, J. Jancar, M. Sabt, P. Schwabe,
G. Barthe, P. Fouque, and Y. Acar, ““these results must be
false”: A wusability evaluation of constant-time analysis tools,”
in Proceedings of the 33rd USENIX Security Symposium,
USENIX Security 2024, Philadelphia, PA, USA, August 14-
16, 2024. USENIX Association, 2024. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/fourne

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

H.J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from automatic
static analysis tools: How far are we?” in Proceedings of the 44th
IEEE/ACM 44th International Conference on Software Engineering,
ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp.
698-709. [Online]. Available: https://doi.org/10.1145/3510003.3510214
P. Garg and S. H. Sengamedu, “Synthesizing code quality rules from
examples,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA2, pp.
1757-1787, 2022. [Online]. Available: https://doi.org/10.1145/3563350
G. D. Palma, S. Giallorenzo, C. Laneve, J. Mauro, M. Trentin, and
G. Zavattaro, “Leveraging static analysis for cost-aware serverless
scheduling policies,” Int. J. Softw. Tools Technol. Transf., vol. 26,
no. 6, pp. 781-796, 2024. [Online]. Available: https://doi.org/10.1007/
$10009-024-00776-9

W. Zheng, Y. Jiang, and X. Su, “Vulspg: Vulnerability detection
based on slice property graph representation learning,” in Proceedings
of the 32nd IEEE International Symposium on Software Reliability
Engineering, ISSRE 2021, Wuhan, China, October 25-28, 2021.
IEEE, 2021, pp. 457-467. [Online]. Available: https://doi.org/10.1109/
ISSRES52982.2021.00054

Z. Guo, T. Tan, S. Liu, X. Liu, W. Lai, Y. Yang, Y. Li,
L. Chen, W. Dong, and Y. Zhou, “Mitigating false positive static
analysis warnings: Progress, challenges, and opportunities,” [EEE
Trans. Software Eng., vol. 49, no. 12, pp. 5154-5188, 2023. [Online].
Available: https://doi.org/10.1109/TSE.2023.3329667

U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a
classifier for false positive error reports emitted by static code analysis
tools,” in Proceedings of the 1st ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL@PLDI
2017, Barcelona, Spain, June 18, 2017. ACM, 2017, pp. 35-42.
[Online]. Available: https://doi.org/10.1145/3088525.3088675

J. Giet, L. Mauborgne, D. Kistner, and C. Ferdinand, “Towards zero
alarms in sound static analysis of finite state machines,” in Proceedings
of the 38th International Conference on Computer Safety, Reliability, and
Security, SAFECOMP 2019, Turku, Finland, September 11-13, 2019,
ser. Lecture Notes in Computer Science, vol. 11698. Springer, 2019, pp.
3-18. [Online]. Available: https://doi.org/10.1007/978-3-030-26601-1_1
T. Muske, R. Talluri, and A. Serebrenik, “Reducing static analysis alarms
based on non-impacting control dependencies,” in Proceedings of the
17th Asian Symposium on Programming Languages and Systems, APLAS
2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, ser. Lecture
Notes in Computer Science, vol. 11893. Springer, 2019, pp. 115-135.
[Online]. Available: https://doi.org/10.1007/978-3-030-34175-6_7

Y. Yang, M. Wen, X. Gao, Y. Zhang, and H. Sun, “Reducing false
positives of static bug detectors through code representation learning,”
in Proceedings of IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2024, Rovaniemi, Finland,
March 12-15, 2024. 1EEE, 2024, pp. 681-692. [Online]. Available:
https://doi.org/10.1109/SANER60148.2024.00075

H. Kim, M. Raghothaman, and K. Heo, “Learning probabilistic models
for static analysis alarms,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 1282-1293. [Online]. Available:
https://doi.org/10.1145/3510003.3510098

A. Murali, N. S. Mathews, M. Alfadel, M. Nagappan, and M. Xu,
“Fuzzslice: Pruning false positives in static analysis warnings through
function-level fuzzing,” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 2024, pp. 65:1-65:13. [Online].
Available: https://doi.org/10.1145/3597503.3623321

Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao,
H. Fan, M. Wen, J. Zeng, S. Ghosh, X. Zhang, C. Zhang, Q. Lin,
S. Rajmohan, D. Zhang, and T. Xu, “Automatic root cause analysis via
large language models for cloud incidents,” in Proceedings of the 19th
European Conference on Computer Systems, EuroSys 2024, Athens,
Greece, April 22-25, 2024. ACM, 2024, pp. 674-688. [Online].
Available: https://doi.org/10.1145/3627703.3629553

Z. Jiang, M. Wen, J. Cao, X. Shi, and H. Jin, “Towards understanding the
effectiveness of large language models on directed test input generation,”
in Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2024, Sacramento, CA, USA,
October 27 - November 1, 2024. ACM, 2024, pp. 1408-1420.
[Online]. Available: https://doi.org/10.1145/3691620.3695513

Y. Wu, M. Wen, Z. Yu, X. Guo, and H. Jin, “Effective vulnerable
function identification based on CVE description empowered by large

https://doi.org/10.1145/3188720
https://doi.org/10.1145/3689031.3696089
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3460120.3484541
https://doi.org/10.1145/3542948
https://doi.org/10.48550/arXiv.2408.12070
https://doi.org/10.1109/ICSE48619.2023.00056
https://doi.org/10.1145/3597926.3604918
https://www.usenix.org/conference/atc19/presentation/bai
https://www.usenix.org/conference/atc19/presentation/bai
https://www.sonarsource.com/
https://github.com/google/error-prone
https://github.com/facebook/infer
https://github.com/semgrep/semgrep
https://github.com/github/codeql
https://github.com/github/pmd
https://doi.org/10.1016/j.jss.2019.110427
https://doi.org/10.1109/ICSE-SEIP.2019.00014
https://doi.org/10.1109/SP54263.2024.00019
https://doi.org/10.1145/3660781
https://www.usenix.org/conference/usenixsecurity24/presentation/fourne
https://doi.org/10.1145/3510003.3510214
https://doi.org/10.1145/3563350
https://doi.org/10.1007/s10009-024-00776-9
https://doi.org/10.1007/s10009-024-00776-9
https://doi.org/10.1109/ISSRE52982.2021.00054
https://doi.org/10.1109/ISSRE52982.2021.00054
https://doi.org/10.1109/TSE.2023.3329667
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1007/978-3-030-26601-1_1
https://doi.org/10.1007/978-3-030-34175-6_7
https://doi.org/10.1109/SANER60148.2024.00075
https://doi.org/10.1145/3510003.3510098
https://doi.org/10.1145/3597503.3623321
https://doi.org/10.1145/3627703.3629553
https://doi.org/10.1145/3691620.3695513

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

language models,” in Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2024, Sacramento,
CA, USA, October 27 - November 1, 2024. ACM, 2024, pp. 393-405.
[Online]. Available: https://doi.org/10.1145/3691620.3695013

Z. Yu, Y. Zhang, M. Wen, Y. Nie, W. Zhang, and M. Yang, “Cxxcrafter:
An llm-based agent for automated C/C++ open source software
building,” Proc. ACM Softw. Eng., vol. 2, no. FSE, pp. 2618-2640,
2025. [Online]. Available: https://doi.org/10.1145/3729386

Z. Yu, M. Wen, X. Guo, and H. Jin, “Maltracker: A fine-grained NPM
malware tracker copiloted by llm-enhanced dataset,” in Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2024, Vienna, Austria, September
16-20, 2024. ACM, 2024, pp. 1759-1771. [Online]. Available:
https://doi.org/10.1145/3650212.3680397

X. Du, M. Wen, J. Zhu, Z. Xie, B. Ji, H. Liu, X. Shi, and
H. Jin, “Generalization-enhanced code vulnerability detection via
multi-task instruction fine-tuning,” in Proceedings of Findings of
the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024. Association
for Computational Linguistics, 2024, pp. 10507-10521. [Online].
Available: https://doi.org/10.18653/v1/2024.findings-acl.625

H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Assisting static analysis with large
language models: A chatgpt experiment,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023. ACM, 2023, pp. 2107-2111.
[Online]. Available: https://doi.org/10.1145/3611643.3613078

J. Chen, H. Xiang, L. Li, Y. Zhang, B. Ding, and Q. Li, “Utilizing
precise and complete code context to guide LLM in automatic
false positive mitigation,” CoRR, vol. abs/2411.03079, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2411.03079

H. Cui, M. Xie, T. Su, C. Zhang, and S. H. Tan, “An empirical
study of false negatives and positives of static code analyzers
from the perspective of historical issues,” 2024. [Online]. Available:
https://arxiv.org/abs/2408.13855

Y. Peng, S. Gao, C. Gao, Y. Huo, and M. R. Lyu, “Domain knowledge
matters: Improving prompts with fix templates for repairing python
type errors,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024. ACM, 2024, pp. 4:1-4:13. [Online]. Available:
https://doi.org/10.1145/3597503.3608132

J. Xiao, Z. Xu, S. Chen, G. Lei, G. Fan, Y. Cao, S. Deng, and Z. Feng,
“Confix: Combining node-level fix templates and masked language
model for automatic program repair,” J. Syst. Softw., vol. 216, p. 112116,
2024. [Online]. Available: https://doi.org/10.1016/j.jss.2024.112116

X. Meng, X. Wang, H. Zhang, H. Sun, X. Liu, and C. Hu, “Template-
based neural program repair,” in Proceedings of the 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023. 1EEE, 2023, pp. 1456-1468.
[Online]. Available: https://doi.org/10.1109/ICSE48619.2023.00127

Q. Zhang, C. Fang, T. Zhang, B. Yu, W. Sun, and Z. Chen,
“Gamma: Revisiting template-based automated program repair
via mask prediction,” in Proceedings of the 38th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2023, Luxembourg, September 11-15, 2023. 1EEE, 2023, pp. 535-547.
[Online]. Available: https://doi.org/10.1109/ASE56229.2023.00063

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019. ACM,
2019, pp. 31-42. [Online]. Available: https://doi.org/10.1145/3293882.
3330577

Y. Zhang and Y. Wang, “Setemapr: Incorporating semantic knowledge
in template-based neural program repair,” in Proceedings of the
International Joint Conference on Neural Networks, IJCNN 2024,
Yokohama, Japan, June 30 - July 5, 2024. 1EEE, 2024, pp.
1-8. [Online]. Available: https://doi.org/10.1109/IJCNN60899.2024.
10650123

T. Nguyen, Q. Ta, and W. Chin, “Automatic program repair using
formal verification and expression templates,” in Proceedings of the
20th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI 2019, Cascais, Portugal, January
13-15, 2019, ser. Lecture Notes in Computer Science, vol. 11388.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Springer, 2019, pp. 70-91. [Online]. Available: https://doi.org/10.1007/
978-3-030-11245-5_4

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” CoRR, vol. abs/1903.08409,
2019. [Online]. Available: http://arxiv.org/abs/1903.08409

H. Zhang, Y. Pei, J. Chen, and S. H. Tan, “Statfier: Automated testing
of static analyzers via semantic-preserving program transformations,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023.
ACM, 2023, pp. 237-249. [Online]. Available: https://doi.org/10.1145/
3611643.3616272

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang, “Synthesizing
conjunctive queries for code search,” in Proceedings of the 37th
European Conference on Object-Oriented Programming, ECOOP
2023, July 17-21, 2023, Seattle, Washington, United States, ser.
LIPIcs, vol. 263, 2023, pp. 36:1-36:30. [Online]. Available: https:
/ldoi.org/10.4230/LIPIcs. ECOOP.2023.36

L. N. Q. Do and E. Bodden, “Explaining static analysis with rule
graphs,” IEEE Trans. Software Eng., vol. 48, no. 2, pp. 678-690, 2022.
[Online]. Available: https://doi.org/10.1109/TSE.2020.2999534

A. De Morgan, Formal logic: or, the calculus of inference, necessary
and probable. Taylor and Walton, 1847.

C. Yang, Z. Zhao, Z. Xie, H. Li, and L. Zhang, “Knighter:
Transforming static analysis with 1lm-synthesized checkers,” CoRR, vol.
abs/2503.09002, 2025. [Online]. Available: https://doi.org/10.48550/
arXiv.2503.09002

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto
et al., “Evaluating large language models trained on code,” CoRR, vol.
abs/2107.03374, 2021. [Online]. Available: https:/arxiv.org/abs/2107.
03374

X. Li, Z. Yu, Z. Zhang, X. Chen, Z. Zhang, Y. Zhuang, N. Sadagopan,
and A. Beniwal, “When thinking fails: The pitfalls of reasoning
for instruction-following in 1lms,” CoRR, vol. abs/2505.11423, 2025.
[Online]. Available: https://doi.org/10.48550/arXiv.2505.11423

J. Lawall and G. Muller, “Coccinelle: 10 years of automated evolution
in the linux kernel,” in Proceedings of the 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July
11-13, 2018. USENIX Association, 2018, pp. 601-614. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/lawall

G. Liang, Q. Wu, Q. Wang, and H. Mei, “An effective defect
detection and warning prioritization approach for resource leaks,”
in Proceedings of the 36th Annual IEEE Computer Software and
Applications Conference, COMPSAC 2012, Izmir, Turkey, July 16-20,
2012. 1EEE Computer Society, 2012, pp. 119-128. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2012.22

Z. Li, S. Dutta, and M. Naik, “IRIS: Ilm-assisted static analysis
for detecting security vulnerabilities,” in Proceedings on the 13th
International Conference on Learning Representations,ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net, 2025. [Online].
Available: https://openreview.net/forum?id=9LdJDU7E91

H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis
for practical bug detection: An llm-integrated approach,” Proc. ACM
Program. Lang., vol. 8, no. OOPSLAI, pp. 474-499, 2024. [Online].
Available: https://doi.org/10.1145/3649828

Q. Hanam, L. Tan, R. Holmes, and P. Lam, “Finding patterns
in static analysis alerts: improving actionable alert ranking,” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014,
Hyderabad, India. ACM, 2014, pp. 152-161. [Online]. Available:
https://doi.org/10.1145/2597073.2597100

C. Latappy, Q. Perez, T. Degueule, J. Falleri, C. Urtado, S. Vauttier,
X. Blanc, and C. Teyton, “Mlinter: Learning coding practices from
examples - dream or reality?” in Proceedings of IEEE International
Conference on Software Analysis, Evolution and Reengineering, SANER
2023, Taipa, Macao, March 21-24, 2023. 1EEE, 2023, pp. 795-804.
[Online]. Available: https://doi.org/10.1109/SANER56733.2023.00092

https://doi.org/10.1145/3691620.3695013
https://doi.org/10.1145/3729386
https://doi.org/10.1145/3650212.3680397
https://doi.org/10.18653/v1/2024.findings-acl.625
https://doi.org/10.1145/3611643.3613078
https://doi.org/10.48550/arXiv.2411.03079
https://arxiv.org/abs/2408.13855
https://doi.org/10.1145/3597503.3608132
https://doi.org/10.1016/j.jss.2024.112116
https://doi.org/10.1109/ICSE48619.2023.00127
https://doi.org/10.1109/ASE56229.2023.00063
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/IJCNN60899.2024.10650123
https://doi.org/10.1109/IJCNN60899.2024.10650123
https://doi.org/10.1007/978-3-030-11245-5_4
https://doi.org/10.1007/978-3-030-11245-5_4
http://arxiv.org/abs/1903.08409
https://doi.org/10.1145/3611643.3616272
https://doi.org/10.1145/3611643.3616272
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://doi.org/10.1109/TSE.2020.2999534
https://doi.org/10.48550/arXiv.2503.09002
https://doi.org/10.48550/arXiv.2503.09002
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2505.11423
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1109/COMPSAC.2012.22
https://openreview.net/forum?id=9LdJDU7E91
https://doi.org/10.1145/3649828
https://doi.org/10.1145/2597073.2597100
https://doi.org/10.1109/SANER56733.2023.00092

	Introduction
	Background
	Static Analyzers and Detection Rules
	Explanation of A Motivation Example

	Approach
	Problem Formulation
	Rule Abstraction
	Test and Validation
	Rule Refinement

	Overview
	Graph Representation and Dynamic Profiling
	Prediacte Graph
	Dynamic Profiling

	Differential Fault Localization
	Differential Analysis
	Prioritization

	Template-Based Refinement
	LLM Refinement and Validation

	Evaluation
	Implementation, Dataset, and Setup
	Implementation
	Dataset
	Baseline Selection and Design
	Setup

	RQ1: Effectiveness
	RQ2: Comparision against Baselines
	RQ3: Configuration Analysis
	RQ4: Ablation Study
	RQ5: Generalization

	Discussion
	Adaptation To Other Analyzers
	Failures in Refinement

	Related Work
	Static Analyzer False Alarm Mitigation
	Static Analysis Detection Rule Generation

	Conclusion
	References

